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The paper addresses the urgent scientific and technical problem of automating crop care processes within the
framework of the Precision Agriculture 4.0 paradigm. The primary objective of the study is to develop the architecture
and investigate the efficiency of a cost-effective cyber-physical system (CPS) for autonomous crop monitoring and
targeted physical destruction of weeds in real-time. This approach minimizes the reliance on chemical herbicides,
thereby addressing the issues of weed resistance and environmental soil degradation. The authors propose and
implement a two-level hierarchical control system for a mobile agricultural robot. The high-level computing layer is
based on the Raspberry Pi 4 Model B single-board computer, which handles computer vision tasks and strategic path
planning. The YOLOv8 Nano neural network architecture was selected and justified for semantic segmentation of
vegetation cover. A set of optimization methods for Edge devices was applied, specifically model conversion to ONNX
format and dynamic weight quantization to INT8 format. This reduced the model size to 6 MB and ensured stable
inference on the CPU without hardware acceleration. The network training was conducted on a dataset of 10,000
images using a loss function that combines the loU metric, binary cross-entropy, and Distribution Focal Loss. The low-
level control is implemented on the ESP32 microcontroller (Dual Core architecture) running the FreeRTOS real-time
operating system. Multi-threaded software was developed to separate communication tasks, inertial sensor (IMU)
polling, and PWM signal generation. A discrete PID controller was implemented to stabilize the angular velocities of
the differential drive platform wheels, compensating for errors caused by soil slippage. Inter-level communication is
established via a UART interface (115200 baud) using a custom JSON-based protocol. A Direct Mapping method is
proposed for manipulator control, eliminating the need for resource-intensive inverse kinematics calculations. Field
test results confirmed the high efficiency of the system: a detection accuracy of mMAP@0.5 at 92.4% was achieved with
an average frame processing speed of 65-70 ms (14.5 FPS). The total latency in the control loop does not exceed 75
ms, and the platform positioning error is within £2.5 cm. Energy monitoring indicated power consumption at the level
of 18-22 W, providing up to 60 minutes of autonomous operation.

Keywords: agrobot, YOLOVS, Precision Agriculture 4.0, ESP32, Raspberry Pi, Computer Vision, PID controller,
Boustrophedon, FreeRTOS.

Introduction use of plant protection products, global crop losses

The contemporary stage of development in the
agro-industrial complex is characterized by the
transition to the "Agriculture 4.0" concept. This
paradigm relies on the integration of the Internet of
Things (loT), robotics, and Artificial Intelligence (Al)
into high-tech cycles for crop monitoring, real-time
decision-making, and the execution of precision
agrotechnical operations [1, 2].

One of the persistent global challenges is weed
control, traditionally performed through the broadcast
application of herbicides. This approach is
increasingly recognized as inefficient due to the
development of herbicide resistance in weeds, the
accumulation of toxic residues in produce, and
groundwater contamination. This results not only in
significant economic costs but also in soil degradation
and ecological crises, as detailed in the works of
leading researchers in agroecology and precision
farming [3]. According to FAO estimates, despite the

caused by weeds amount to approximately 34% [4].

The response to these challenges lies in the
concept of precision agriculture, which entails a shift
from blanket field treatment to site-specific
intervention [2]. Autonomous robotic platforms
constitute a pivotal element of such technologies.
Market analysis conducted in [5] indicates that
existing commercial solutions are characterized by
high costs, which hinders their widespread
implementation in the small and medium-sized
farming segment.

Scientific literature extensively reviews methods
for automatic plant identification. The modern
scientific community is actively advancing the
application of computer vision in agronomy [6, 7].
While early approaches were based on spectral
analysis, the advent of deep learning has established
Convolutional Neural Networks (CNNs) as the
standard [8]. Studies [9, 10] convincingly demonstrate
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the advantages of the YOLO family detectors for
high-speed object detection and classification in
dynamic field conditions, particularly when operating
on resource-constrained on-board computing units.

However, the practical application of modern
neural network architectures, as discussed in [11],
faces limitations regarding the computational
resources of on-board systems. A key challenge in
designing autonomous agricultural robots is not
merely detection accuracy, but ensuring real-time
synchronization between the computer vision system
and the actuation mechanism, which necessitates the
development of integrated control approaches.

The objective of this work is to develop and
investigate a cost-effective control system for a mobile
agricultural robot that ensures the coordinated
operation of the neural network detection loop and the
platform motion stabilization loop.

2. Materials and Methods

2.1. Mathematical Model of Kinematics

To facilitate efficient maneuvering within narrow
inter-row spaces and to negotiate challenging soil
conditions, the selection of a four-wheeled platform
utilizing a differential drive was justified. In contrast to
conventional steering configurations, this architecture
enables the implementation of a zero turn radius [12]

q= [A'._\'.U]T,

where x and y denote the coordinates of the platform's
geometric center, and O represents the orientation
angle of the body relative to the abscissa axis.

The mathematical model of the motion
kinematics is presented in matrix form by the
expression [13]:
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In the presented model, V denotes the linear
velocity of the platform's geometric center, while @
represents the angular velocity of the chassis rotation.
Kinematic control is achieved by calculating and
applying the requisite angular velocities for the right,
®, and left, o, drive wheels.

The relationship between the target motion
parameters and the angular velocities of the wheels is
defined by the system of equations (2):

v=§(ﬁ)ﬁ+mL),m=?a’{a}R—mL), (2)
where R denotes the wheel radius, and L represents
the distance between the wheels (wheel base).

The incorporation of the coefficient $\mu$ is
necessitated by the specific operational dynamics of
the agricultural robot. In contrast to locomotion on
rigid surfaces, movement over deformable terrain
induces longitudinal and lateral slippage of the drive
wheels  during maneuvering. It has been
experimentally established that for dry soil of medium
density, the optimal value of this coefficient is

a =0.85.

2.2. Hardware

The hardware component of the complex is
implemented based on a two-level hierarchical
architecture, which ensures the decomposition of control
tasks and the optimization of computational load. The
schematic diagram of the electrical connections of the
system components is presented in Fig. 1.
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Fig. 1. Schematic diagram of the electrical connections of the system components
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A Raspberry Pi 4 Model B single-board
computer (Raspberry Pi Foundation, UK) was selected
as the central control module. The choice of this
platform is justified by its optimal balance of
computational power (ARM Cortex-A72 architecture)
and energy efficiency. The availability of a hardware
Camera Serial Interface (CSI) provides direct access
to the video core, thereby minimizing latency during
video stream processing and reducing the load on the
central processing unit (CPU) during the execution of
computer vision algorithms.

Real-time control functions for the actuation
equipment are assigned to an ESP32 DevKit V1
microcontroller (based on the ESP32-WROOM-32
chip by Espressif Systems, PRC). The system
architecture provides for load distribution between the
two microcontroller cores: the first core handles
communication (WiFi/UART), while the second is
dedicated to generating PWM signals for the drivers
and sensor polling. This approach guarantees the
determinism of the control process and the operational
stability of the actuators, even in the event of latency
within the data transmission channel.

Power supply for the mobile platform is provided
by a battery pack consisting of 18650 lithium-ion cells
(2S configuration, nominal voltage 7.4 V, capacity 3000
mADh). To ensure a stable power supply for low-voltage
logic circuits, a step-down switching DC-DC converter
based on the LM2596 IC with a 5 V output voltage was
utilized [14]. Control of the electric motor power circuits
is implemented using an L298N driver, which provides
current switching of up to 2 A per channel.

2.3. Features and Algorithm for End-Effector
Positioning Control

A key task of the system following the detection
of a target object (weed) is the transformation of its
screen coordinates into a corresponding control signal
for the actuation mechanism. This requires the
alignment of two reference frames: the Cartesian
coordinate system of the digital image, where position
is defined in pixels (with the axis directed to the

right), and the polar coordinate system of the
manipulator, where the angle is measured relative to
the robot's longitudinal axis.

To ensure high targeting speed without
employing  resource-intensive iterative  inverse
kinematics algorithms, a Direct Mapping coordinate
method is proposed. The rotation angle of the servo
drive output shaft, @  “is determined via an affine

transformation of the horizontal coordinate of the
object's center, X, within the image coordinate system.
The calculation formula is expressed as follows:
0=0 —|— x(o ©))
w
where W — represents the frame width in pixels; G,
Bmar — denote the limiting angles of servo drive
rotation (physical operating range); and x corresponds
to the current horizontal coordinate of the detected
object's center of mass [15].
The physical interpretation of expression (3) is as
follows: the ratio ﬁ normalizes the object's

nax max min )

coordinate, mapping it to the dimensionless range [O;
1]. The multiplier 6 —&0 _ scales the obtained

max min

value according to the manipulator's operating sector.
The operation of subtraction from the upper limit Om N

implements the necessary mirror inversion of the
control signal. This compensates for the directional
discrepancy between the axes, since, in the standard
image coordinate system, the X-axis is oriented from
left to right, whereas an increase in the servo rotation
angle mechanically corresponds to counter-clockwise
rotation.

3. SOFTWARE IMPLEMENTATION

3.1. Selection of Neural Network Architecture

The computer vision module constitutes a pivotal
component of the system. A comparative analysis of
contemporary lightweight neural network
architectures was conducted to select the optimal
model (Table 1).

Table 1. Comparative analysis of neural network architectures for edge devices

Architecture Model Size (FP32), MB

mAP@0.5 (COCO), %

Inference Time (RPi 4
CPU), ms

MobileNet SSD v2 14.0 221 ~85
YOLOVS5 Nano 3.9 28.0 ~110
YOLOvV8 Nano 6.2 37.3 ~135

Based on the analysis presented in [16, 17], the
YOLOv8 Nano architecture was selected, as it
provides the highest accuracy while maintaining
acceptable processing speed. To optimize execution on
the CPU, the model was converted to the ONNX
format employing dynamic quantization (INT8). This

transformation resulted in a reduction of inference
time to 65-70 ms.

3.2. Neural Network Detection (YOLOV8)

The core of the computer vision subsystem is the
YOLOV8 Nano architecture. The selection of this model
is justified by its high computational efficiency on
embedded systems (Edge Devices). It is a one-stage
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detector utilizing an anchor-free approach, which
simplifies the training process and accelerates inference.

Model training was conducted on a specialized
dataset comprising 10,000 images representing
various vegetative stages of weeds and crop plants. To
enhance the robustness of the detector, data
augmentation techniques were employed, including
affine  transformations,  brightness  histogram
equalization,  noise  injection, and  Mosaic
augmentation.

The objective Loss Function is defined as the
weighted sum of three components:

"Cm.rm’=j';;,,_\-'£hn.l'+;"(-;.‘-£dﬁ. +/L¢;f';:;£rlf;‘f ! (4)
where £, - represents the bounding box regression
loss (based on the loU metric), £, — enotes the binary

cross-entropy for the classification task, and A_Edu -

corresponds to the Distribution Focal Loss utilized for
object boundary refinement [18].
In the practical implementation, the weighting

coefficients A! ) ; ,Ad” in formula (4) were defined in
AN cis

the hyperparameter configuration file hyp.yaml as
follows: box: 7.5 (prioritizing boundary precision), cls:
0.5 (classification), and dfl: 1.5. This configuration
allowed the training emphasis to be shifted toward the
precise positioning of the end-effector.

For deployment on the Raspberry Pi platform,
the model was exported to the ONNX format utilizing
dynamic weight quantization (INT8). This resulted in
a reduction of the model size to 6 MB and a 2.5-fold
increase in inference speed on the CPU compared to
the original PyTorch implementation.

3.3. Communication Protocol and Low-Level
Control

The interaction between the high-level system
(Raspberry Pi) and the low-level controller (ESP32) is
implemented via a UART interface (Baud Rate:
115200). To ensure data integrity, an application-layer
protocol based on the JSON structure was developed:

{

"cmd": "move",

"val": [0.5, -0.2],

"tool": 1,

"id": 1024,

"crc": "alb2"

}

The ESP32 firmware is built upon the FreeRTOS
real-time operating system. The firmware architecture
entails the parallelization of processes into three
prioritized tasks:

1. MotionTask (High Priority): Execution
interval of 10 ms. Implements a digital PID controller
for wheel rotational speed based on feedback from
quadrature encoders.

2. SensorTask (Medium Priority): Acquisition
and filtration of data from the inertial measurement
unit (MPU-6050) utilizing a Kalman filter for
orientation estimation.

3. CommTask (Low Priority): Asynchronous
processing of the UART input buffer, parsing of JSON
packets, and updating of state variables.

The discrete implementation of the motor control
law is described by tfk1e following equation:

ulk]=K e[k]+K, 2 e[j]+K (e[k]=e[k=1]) . (5)
i=o

where e(k) denotes the velocity error at the k-th time

step. The coefficients KP,KJ_,and Kd were

experimentally determined using the Ziegler-Nichols
method to ensure an aperiodic transient response.

The software implementation of this control law
in C++ within the FreeRTOS environment for the
ESP32 microcontroller is provided below:

/I PID controller implementation (MotionTask
fragment)

float compute_pid(float target, float current, float
dt) {

float error = target - current;
static float integral = 0, prev_error = 0;

integral += error * dt;
float derivative = (error - prev_error) / dt;

/I Equation (5) implementation
float output = (Kp * error) + (Ki * integral) +
(Kd * derivative);

prev_error = error;
return constrain(output, -255, 255);

}

3.4. Human-Machine Interface (HMI)

To facilitate system monitoring and control, a
web-based interface built upon the Flask framework
(Python) was developed. The utilization of WebSocket
technology  (SocketlO  library) enables the
transmission of the video stream featuring detection
overlay masks, alongside telemetry data (battery
charge, coordinates, status), to the client browser with
a latency of less than 100 ms.

3.5. System Operation Algorithm

To implement the autonomous execution of
agrotechnical operations, a control algorithm
functioning on the principle of a closed-loop feedback
system was developed. The system logic encompasses
a sequence of data processing stages, ranging from
sensor data acquisition to the generation of control
inputs for the actuators.

The initial stage involves loading the YOLOVS8
neural network weights into the onboard computer's
RAM, configuring UART interface parameters for
communication with the low-level controller, and
calibrating the Inertial Measurement Unit (IMU) to
establish the zero horizon.

The system captures a frame from the camera via
the CSlI interface. To ensure compatibility with the neural
network's input layer, image resizing to a resolution of
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320%x320 pixels, pixel value normalization, and color
space conversion are performed.

Subsequently, model inference is executed for
object detection. The algorithm filters results based on
a confidence threshold ($P > 0.63$). Upon detection of
an object of the "Weed" class, the coordinates of its
geometric center are computed, the manipulator
rotation angle is calculated (Equation 3), and an
action: destroy command is generated. Conversely, the

detection of a "Crop" class object activates a Safety
Mask. Based on the analysis of free space within the
inter-rows, a vector of linear ($v$) and angular
($\omega$) velocities is calculated for course
correction. The data are serialized into JSON format
and transmitted to the ESP32 for execution by the PID
controller. A graphical representation of the developed
algorithm is presented in Fig. 2.
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Fig. 2. Flowchart of the agricultural robot control system operation algorithm
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A Python code fragment performing this
coordinate mapping on the Raspberry Pi onboard
computer is presented below:

def get_servo_angle(bbox_center_x,
frame_width=320):

# Practical implementation of formula (3)

# Coordinate normalization and inversion for
the servo drive

norm_x = bbox_center_x/ frame_width

angle = THETA_MAX - (norm_x *
(THETA_MAX - THETA_MIN))

return int(angle)

3.6. Structural Implementation of the Physical
Prototype

To experimentally validate the theoretical
calculations and the proposed control algorithms, a
functional physical prototype of the mobile agricultural
robot was developed and fabricated. The general view
of the constructed prototype and the layout of its
primary components are presented in Fig. 3.

Structurally, the robot is based on a four-wheel
drive (4WD) chassis utilizing differential steering.
This configuration ensures high maneuverability and
the capability to perform zero-radius turns within
confined inter-row spaces. The overall dimensions of
the platform are 260x160x150 mm.

Fig. 3. Hardware layout of the experimental
agricultural robot prototype

The component layout is implemented using a
two-tier configuration, enabling the separation of
power and logic circuits:

e Lower Level (Power): This tier houses four
brushed DC motors equipped with gearboxes (gear
ratio 1:48) and the L298N motor control driver. This
arrangement, combined with the placement of the
battery pack in the lower section of the chassis, lowers
the center of mass, thereby ensuring the platform's
kinematic stability when traversing uneven terrain.

e Upper Level (Computational): This tier
contains the control electronics, specifically the
Raspberry Pi 4 single-board computer and a
prototyping board for signal line routing. As illustrated
in Fig. 3, peripheral connections are established using
flexible  jumper  wires,  facilitating rapid
reconfiguration of the circuit during the debugging
process.

The optical system (Raspberry Pi Camera v3
module) is mounted at the frontal section of the robot.
It is connected via a flexible ribbon cable (CSI),
minimizing data transmission latency, which is critical
for real-time neural network operation. Additionally,
an ultrasonic rangefinder is installed on the front panel
to implement an emergency stop mechanism upon
obstacle detection.

4. Experimental Results

Field trials were conducted on a test site
featuring mixed vegetation under natural lighting
conditions (sunny/cloudy). The objective of the
experiments was to verify detection accuracy, system
response speed, and energy efficiency.

4.1. Analysis of Computer Vision Efficiency

The performance results of the detection
algorithm are presented in Fig. 4. The model
demonstrated a high generalization capability,
successfully detecting weeds even under conditions of
partial occlusion by crop leaves.

Red bounding boxes indicate weed classification,
while green bounding boxes designate crop plants.

To evaluate classification quality, the mAP@0.5
metric (mean Average Precision at an Intersection over
Union (loU) threshold of 0.5) was utilized. Validation
results on the test dataset demonstrated an mAP value
of 92.4%. The Confusion Matrix revealed that the
majority of errors were attributed to False Positives
(FP) involving grass species with similar textures; this
issue can be mitigated by expanding the dataset [16].

An analysis of temporal characteristics indicated
that the transition to the ONNX Runtime execution
environment with an input resolution of 320x240
pixels (optimal for inference) enabled the achievement
of a stable frame rate of 14.5 FPS.

Concurrently, detection accuracy on the
validation dataset was maintained at mAP@0.5 =
92.4%. The total system latency within the control
loop (Camera — RPi — ESP32 — Motor) is
approximately 65-75 ms, which permits the robot to
travel at velocities of up to 0.5 m/s without
compromising processing quality.

Due to the implementation of sensor fusion
algorithms  combining odometry and Inertial
Measurement Unit (IMU) data, the platform
positioning error does not exceed £2.5 cm.

4.2. Analysis of Energy Efficiency

Power consumption measurements taken during
field trials recorded an average load of 18-22 W in the
active patrolling mode. The primary energy
expenditure is attributed to the operation of the
traction motors during locomotion over soil and the
power supply of the Raspberry Pi computing module.
The installed battery capacity (3000 mAh, ~22 Wh) is
sufficient for 45-60 minutes of autonomous operation.
While this metric is adequate for maintaining
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homestead plots, industrial implementation requires
the optimization of the power supply system,
specifically through the integration of photovoltaic
panels or an automated charging station.

4.3. Analysis of Accuracy and Neural Network
Training

In the second stage, the training and validation of
the neural network were conducted. The dynamics of
the Mean Average Precision (mAP) over 100 training
epochs are illustrated in Fig. 5.

Fig. 4. Results of object detection by the neural network under real-world conditions: (a) Redroot pigweed (Amaranthus
retroflexus), 97%; (b) Field bindweed (Convolvulus arvensis), 95%; (c) Jimsonweed (Datura stramonium), 95%;
(d) Sugar beet (Beta vulgaris), 91%; (e) Sunflower (Helianthus annuus), 89%; (f) Winter rye (Secale cereale),

89%.
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Fig. 5. Neural network training dynamics (metrics mMAP@0.5 and mAP@0.5:0.95).

The mAP@0.5 curve (green line) exhibits a
plateau at the 0.96-0.97 level subsequent to the 60th
epoch, indicating the stability of the training process
and the absence of overfitting. This validates the
appropriateness of the selected hyperparameters and
the data augmentation strategy employed [19].

To conduct a detailed analysis of classification
errors, a normalized Confusion Matrix was generated,

as presented in Fig. 6. This facilitates the assessment
of recognition accuracy for each individual class.

The diagram indicates that the recognition
accuracy for the target class "Weed" is 92%, while
false negatives (misclassifying a weed as a crop)
constitute only 3%.
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Fig. 6. Normalized Confusion Matrix

The misclassification of a crop as a weed (False
Positive) stands at 2%, which is an acceptable metric
for automated weeding systems [20], as it minimizes
the risk of crop damage.

Based on the obtained data, the integral
performance metrics of the system were calculated
using the test dataset: Precision was 0.934, and Recall
was 0.964. The overall Mean Average Precision
(mMAP@0.5) reached 92.4%.

Conclusions

This paper proposes a comprehensive solution to
the topical scientific and technical problem of weeding
automation, implemented through the creation of a
cyber-physical system that combines deep learning
methods with embedded control algorithms.

The primary scientific outcome of the study is
the substantiation and implementation of a two-level
control architecture, wherein the distribution of
computational load between the high-level module
(Raspberry Pi) and the real-time controller (ESP32)
addressed the resource-intensive nature of computer
vision algorithms. This configuration ensured the
requisite performance for neural network inference
while maintaining the strict determinism of control
signal generation, which is critical for platform motion
safety.

The efficacy of utilizing quantized models has
been experimentally proven: the application of the
YOLOV8 Nano architecture in INT8 format enabled a
video stream processing speed of 145 FPS on
general-purpose processors without the involvement

of specialized hardware accelerators. This confirms
the feasibility of real-time system operation while
maintaining low hardware costs. Concurrently, the
implementation of the kinematic model in conjunction
with PID speed control ensured motion stability over
uneven terrain and mitigated the impact of wheel
slippage during maneuvering in confined spaces.
Future development of the project envisions the
integration of an RTK-GPS module to achieve
centimeter-level global positioning accuracy, as well
as the development of a laser system for the non-
contact elimination of weeds, which will minimize
mechanical and chemical impact on the soil.

References

[1] S. G. Vougioukas, “Agricultural robotics,” Annu.
Rev. Control Robot. Auton. Syst., vol. 2, pp. 365—
392, 2019. DOI: 10.1146/annurev-control-053018-
023617.

[2] Y. Liu, X. Ma, L. Shu, G. P. Hancke, and A. M.
Abu-Mahfouz, “From Industry 4.0 to Agriculture
4.0: Current status, enabling technologies, and re-
search challenges,” IEEE Trans. Ind. Informatics,
vol. 17, no. 6, pp. 4322-4334, 2021. DOI:
10.1109/T11.2020.3003910.

[3] S. B. Powles and Q. Yu, “Evolution in action:
Plants resistant to herbicides,” Annu. Rev. Plant
Biol., vol. 61, pp. 317-347, 2010. DOI:
10.1146/annurev-arplant-042809-112119.

[4] FAO, The Future of Food and Agriculture —
Trends and Challenges. Rome, Italy: Food and
Agriculture Organization of the United Nations,

88 Bicnuxk KIII. Cepia IIPHJIA/IOBY/]YBAHHA, Bun. 70(2), 2025



ISSN (p) 0321-2211, ISSN (e) 2663-3450

Aemomamu3sayin ma inmeneKmyanizayisa npua1adooyoyeanHs

2017.

[5] R. R. Shamshiri, C. Weltzien, I. A. Hameed, I. J.
Yule, T. E. Grift, and S. K. Balasundram, et al.,
“Research and development in agricultural robot-
ics: A perspective of digital farming,” Int. J. Agric.
Biol. Eng., vol. 11, no. 4, pp. 1-14, 2018. DOI:
10.25165/j.ijabe.20181104.4278.

[6] A. Kamilaris and F. X. Prenafeta-Boldu, “Deep
learning in agriculture: A survey,” Comput. Elec-
tron. Agric., vol. 147, pp. 70-90, 2018. DOI:
10.1016/j.compag.2018.02.016.

[7] K. G. Liakos, P. Busato, D. Moshou, S. Pearson,
and D. Bochtis, “Machine learning in agriculture:
A review,” Sensors, vol. 18, is. 8, 2674, 2018.
DOI: 10.3390/s18082674.

[8] S. M. Hasan, F. Sohel, D. Diepeveen, H. Laga, and
M. G. Jones, “hmage-based-weed-detection: A sur-
vey of deep learning techniques,” Comput. Elec-
tron. Agric., vol. 184, 106067, 2021. DOI:
10.1016/j.compag.2021.106067.

[9] J. Redmon and A. Farhadi, “YOLOV3: An incre-
mental improvement,” arXiv 1804.02767, 2018.
DOI: 10.48550/arXiv.1804.02767.

[10] J. Terven and D.-M. Cérdova-Esparza, “A com-
prehensive review of YOLO architectures in com-
puter vision,” Mach. Learn. Knowl. Extr., vol. 5,
is. 4, pp. 1680-1716, 2023. DOI:
10.3390/make5040083.

[11] A. Gholami, S. Kim, Z. Dong, Z. Yao, M. W.
Mahoney, and K. Keutzer, “A survey of quantiza-
tion methods for efficient neural network infer-
ence,” arXiv  2103.13630, 2021. DOL:
10.48550/arXiv.2103.13630.

[12] R. Siegwart, I. R. Nourbakhsh, and D. Scaramuz-
za, Introduction to Autonomous Mobile Robots,
2nd ed. Cambridge, MA, USA: MIT Press, 2011.

[13] B. Siciliano, L. Sciavicco, L. Villani, and G.
Oriolo, Robotics: Modelling, Planning and Con-
trol. London, U.K.: Springer, 2010. DOI:

YK 631.362:004.896

10.1007/978-1-84628-642-1.

[14] Texas Instruments, “LM2596 SIMPLE
SWITCHER® power converter 150 kHz 3A step-
down voltage regulator,” Datasheet SNVS124G,
2023. [Online]. Available:
https://www.ti.com/lit/ds/symlink/Im2596.pdf;
STMicroelectronics, “L298 — Dual full-bridge
driver,” Datasheet CD00000240, 2016. [Online].
Available:
https://www.st.com/resource/en/datasheet/I298.pdf

[15] Arduino, “Servo library,” Documentation.
[Online]. Available:
https://www.arduino.cc/reference/en/libraries/serv
o/

[16] G. Jocher, A. Chaurasia, and J. Qiu, “Ultralytics
YOLOVS,” GitHub repository, 2023. [Online].
Available: https://github.com/ultralytics/ultralytics

[17] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M.
Liao, “YOLOV7: Trainable bag-of-freebies sets
new state-of-the-art for real-time object detectors,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), 2023, pp. 7464-7475.

DOI: 10.1109/CVPR52729.2023.00721.

[18] X. Li, W. Wang, L. Wu, S. Chen, X. Hu, J. Li,
and J. Yang, “Generalized focal loss: Learning
qualified and distributed bounding boxes for dense
object detection,” arXiv 2006.04388, 2020.

DOI: 10.48550/arXiv.2006.04388.

[19] M. Sokolova and G. Lapalme, “A systematic
analysis of performance measures for classification
tasks,” Inf. Process. Manag., vol. 45, is. 4, pp.
427-437, 2009. DOI: 10.1016/j.ipm.2009.03.002.

[20] A. Binch and C. W. Fox, “Controlled comparison
of machine vision algorithms for Rumex and Urti-
ca detection in grassland,” Comput. Electron.
Agric., vol. 140, pp. 123-138, 2017. DOI:
10.1016/j.compag.2017.05.018

DQ. I. Momnean, VM. O. Besyrauii, 2 Aumseii 3epBa

YNational Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv,
Ukraine;

2Rzeszow University of Technology, Rzeszéw, Poland
CHUCTEMA KEPYBAHHA MOBUIBHUM
HEMPOMEPEXXEBOI JETEKLIII OF'€KTIB

VY pobori BupilryeThes akTyallbHa HAQyKOBO-TEXHIUHA 3a/la4a aBTOMAaTH3allil IPOLECiB OISy 3a CIIIbCHKOrOCIIONapCh-
KHMH KyJIbTypaMy B KOHTEKCTI napaxurmu Precision Agriculture 4.0.

Mertolo fOCTi/KEHHST € po3po0Ka apXiTeKTypu Ta HOCIHiIKeHHS e(eKkTHBHOCTI OlokeTHOI Kibepdi3uuHOi cucTemMu
(CPS) nmnst aBTOHOMHOTO MOHITOPHHTY TIOCIBIB Ta TOYKOBOTO (hi3MUHOTO 3HUILEHHS Oyp'siHIB y PEKUMI PEaIbHOTO Yacy.
Lle no3Boisie MiHIMI3yBaTH BUKOPHCTaHHS XIMIYHUX repOilMJIiB, BUPIIIYIOYH NMPOOIEMY PE3UCTEHTHOCTI HIKIJUIMBUX
POCIIMH Ta €KOJIOTIYHOTO HAaBAHTAKEHHS Ha IPYHTH.

ABTOpaMH 3aIIPOTIOHOBAHO Ta Peati30BaHO ABOPIBHEBY i€papXidHy CHCTEMY KepyBaHHS MOOITEHIM arpopobotom. Bep-
XHIH piBeHb 00UnCIIeHs 0a3yeThca Ha ogHOIIaTHOMY Komm'totepi Raspberry Pi 4 Model B, sxuit BukoHye 3amadi KOM-

AT'POPOEOTOM HA OCHOBI

Bicnuxk KIII. Cepia IIPUHJIA/IOBY/]YBAHHA, Bun. 70(2), 2025 89


https://www.ti.com/lit/ds/symlink/lm2596.pdf?utm_source=chatgpt.com
https://www.st.com/resource/en/datasheet/l298.pdf
https://www.arduino.cc/reference/en/libraries/servo/
https://www.arduino.cc/reference/en/libraries/servo/
https://github.com/ultralytics/ultralytics?utm_source=chatgpt.com

ISSN (p) 0321-2211, ISSN (e) 2663-3450
Aemomamu3sayia ma inmeneKkmyanizayis npuiado0yoyeanns

M'IOTEPHOTO 30py Ta CTPATETivyHOTO IUIaHyBaHHA. 71 CEeMaHTHYHOI CerMEHTalii POCIHMHHOTO MOKPUBY OOIPYHTOBAHO
BuOip HelipomepesxeBoi apxiTekrypn YOLOvV8 Nano.

3acTocoBaHO KOMILIEKC METOAIB onTuMizarii 1t Edge-puctpois: koHBepTamiro mozaeni y ¢popmar ONNX Ta nuHamid-
He KBaHTyBaHHS Bar 10 ¢opmary INTS, mo no3ommno 3mMeHmmTy po3Mip mozerni 10 6 Mb ta 3abe3neunTty ctadiapHAN
inpepenc na CPU. HaByanHus mepexi nmpoBoxuiiocs Ha naraceti 3 10 000 300paxxeHb 13 BUKOPUCTaHHAM (QyHKIIT BTpaT,
o koMOinye meTpuky loU, 6iHapHy kKpoc-eHTporito Ta Distribution Focal Loss. HukHili piBeHb KepyBaHHS peaji3oBa-
HO Ha MikpokoHTponepi ESP32 (apxitekrypa Dual Core) mijg kepyBaHHSM OIlepaliiiiHOi CUCTEMH peajibHOrO 4acy
FreeRTOS. Po3pobneno 6aratornoTrokoBe mporpamHe 3a0e3leueHHs, [0 PO3AUILE 3ahadi KOMYHiKalii, OnUTyBaHHS
iHepuianpHux paryukis (IMU) ta renepanii LHIIM-curnanis.

PeamnizoBaHo auckpernuii PID-perynstop st crabinmizauii KyToBHX IIBHIKOCTEH Koulic miatgopMu 3 audepeHiiaib-
HUM TPHBOIOM, IO HIBENIOE€ IOXHOKH BiJ IMPOKOB3yBaHHS Ha IPpyHTi. B3aemomis MiX piBHAMH 3HIHCHIOETBCS depes
UART-iaTepodeiic (115200 60x) 3a aBTOpchkuM mpoTokoioM Ha 6a3i JSON. [l kepyBaHHS MaHIITYISATOPOM 3aIpoIio-
HOBaHO METOA TIPsAMOTro BimoOpaxkeHHs koopamHaT (Direct Mapping), mo BUKIIO9AaEe HEOOXiTHICTH PECYpCOMiCTKUX
obunciieHs obepHEeHOI KiHeMaTHKu. Pe3ynapraT mONb0BUX BUIPOOYBaHb IMiATBEPINIA BUCOKY €(DEeKTHBHICTh CHCTEMH:
JOCSATHYTO TO4HICTH AeTekuii mAP@0.5 na piBHI 92.4% npu cepenniii mBHAKOCTI 00pobku kaapy 65-70 mc (14.5
FPS). 3aranpHa 3aTpuMKka B KOHTYpi KepyBaHHS HE MEpEBUIIYE 75 McC, a MoXHOKa MO3HUIIOHYBaHHS IIAT(GOPMHU CTaHO-
BUTH £2.5 cM.

EHepreTnuHuii MOHITOPHHT 1OKa3aB CIIOKUBAaHHA Ha piBHI 18—22 Br, mio 3a6e3neuye 10 60 XBUIMH aBTOHOMHOT pOOOTH.
Kawuosi cioBa: arpopo6otr, YOLOVS, Precision Agriculture 4.0,, ESP32, Raspberry Pi, Computer Vision, PID-
perynsitop, Boustrophedon, FreeRTOS.
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