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The paper addresses the urgent scientific and technical problem of automating crop care processes within the 

framework of the Precision Agriculture 4.0 paradigm. The primary objective of the study is to develop the architecture 

and investigate the efficiency of a cost-effective cyber-physical system (CPS) for autonomous crop monitoring and 

targeted physical destruction of weeds in real-time. This approach minimizes the reliance on chemical herbicides, 

thereby addressing the issues of weed resistance and environmental soil degradation. The authors propose and 

implement a two-level hierarchical control system for a mobile agricultural robot. The high-level computing layer is 

based on the Raspberry Pi 4 Model B single-board computer, which handles computer vision tasks and strategic path 

planning. The YOLOv8 Nano neural network architecture was selected and justified for semantic segmentation of 

vegetation cover. A set of optimization methods for Edge devices was applied, specifically model conversion to ONNX 

format and dynamic weight quantization to INT8 format. This reduced the model size to 6 MB and ensured stable 

inference on the CPU without hardware acceleration. The network training was conducted on a dataset of 10,000 

images using a loss function that combines the IoU metric, binary cross-entropy, and Distribution Focal Loss. The low-

level control is implemented on the ESP32 microcontroller (Dual Core architecture) running the FreeRTOS real-time 

operating system. Multi-threaded software was developed to separate communication tasks, inertial sensor (IMU) 

polling, and PWM signal generation. A discrete PID controller was implemented to stabilize the angular velocities of 

the differential drive platform wheels, compensating for errors caused by soil slippage. Inter-level communication is 

established via a UART interface (115200 baud) using a custom JSON-based protocol. A Direct Mapping method is 

proposed for manipulator control, eliminating the need for resource-intensive inverse kinematics calculations. Field 

test results confirmed the high efficiency of the system: a detection accuracy of mAP@0.5 at 92.4% was achieved with 

an average frame processing speed of 65–70 ms (14.5 FPS). The total latency in the control loop does not exceed 75 

ms, and the platform positioning error is within ±2.5 cm. Energy monitoring indicated power consumption at the level 

of 18–22 W, providing up to 60 minutes of autonomous operation. 

Keywords: agrobot, YOLOv8, Precision Agriculture 4.0, ESP32, Raspberry Pi, Computer Vision, PID controller, 

Boustrophedon, FreeRTOS. 

 

 

Introduction 

The contemporary stage of development in the 

agro-industrial complex is characterized by the 

transition to the "Agriculture 4.0" concept. This 

paradigm relies on the integration of the Internet of 

Things (IoT), robotics, and Artificial Intelligence (AI) 

into high-tech cycles for crop monitoring, real-time 

decision-making, and the execution of precision 

agrotechnical operations [1, 2]. 

One of the persistent global challenges is weed 

control, traditionally performed through the broadcast 

application of herbicides. This approach is 

increasingly recognized as inefficient due to the 

development of herbicide resistance in weeds, the 

accumulation of toxic residues in produce, and 

groundwater contamination. This results not only in 

significant economic costs but also in soil degradation 

and ecological crises, as detailed in the works of 

leading researchers in agroecology and precision 

farming [3]. According to FAO estimates, despite the 

use of plant protection products, global crop losses 

caused by weeds amount to approximately 34% [4]. 

The response to these challenges lies in the 

concept of precision agriculture, which entails a shift 

from blanket field treatment to site-specific 

intervention [2]. Autonomous robotic platforms 

constitute a pivotal element of such technologies. 

Market analysis conducted in [5] indicates that 

existing commercial solutions are characterized by 

high costs, which hinders their widespread 

implementation in the small and medium-sized 

farming segment. 

Scientific literature extensively reviews methods 

for automatic plant identification. The modern 

scientific community is actively advancing the 

application of computer vision in agronomy [6, 7]. 

While early approaches were based on spectral 

analysis, the advent of deep learning has established 

Convolutional Neural Networks (CNNs) as the 

standard [8]. Studies [9, 10] convincingly demonstrate 
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the advantages of the YOLO family detectors for 

high-speed object detection and classification in 

dynamic field conditions, particularly when operating 

on resource-constrained on-board computing units. 

However, the practical application of modern 

neural network architectures, as discussed in [11], 

faces limitations regarding the computational 

resources of on-board systems. A key challenge in 

designing autonomous agricultural robots is not 

merely detection accuracy, but ensuring real-time 

synchronization between the computer vision system 

and the actuation mechanism, which necessitates the 

development of integrated control approaches. 

The objective of this work is to develop and 

investigate a cost-effective control system for a mobile 

agricultural robot that ensures the coordinated 

operation of the neural network detection loop and the 

platform motion stabilization loop. 

 

2. Materials and Methods 

2.1. Mathematical Model of Kinematics 

To facilitate efficient maneuvering within narrow 

inter-row spaces and to negotiate challenging soil 

conditions, the selection of a four-wheeled platform 

utilizing a differential drive was justified. In contrast to 

conventional steering configurations, this architecture 

enables the implementation of a zero turn radius [12] 

, 

where x and y denote the coordinates of the platform's 

geometric center, and  represents the orientation 

angle of the body relative to the abscissa axis.  

The mathematical model of the motion 

kinematics is presented in matrix form by the 

expression [13]: 

 

(1) 

In the presented model, V denotes the linear 

velocity of the platform's geometric center, while  

represents the angular velocity of the chassis rotation. 

Kinematic control is achieved by calculating and 

applying the requisite angular velocities for the right, 

 and left,  drive wheels. 

The relationship between the target motion 

parameters and the angular velocities of the wheels is 

defined by the system of equations (2): 

 (2) 

where R denotes the wheel radius, and L represents 

the distance between the wheels (wheel base). 

The incorporation of the coefficient $\mu$ is 

necessitated by the specific operational dynamics of 

the agricultural robot. In contrast to locomotion on 

rigid surfaces, movement over deformable terrain 

induces longitudinal and lateral slippage of the drive 

wheels during maneuvering. It has been 

experimentally established that for dry soil of medium 

density, the optimal value of this coefficient is 

. 
 

2.2. Hardware 

The hardware component of the complex is 

implemented based on a two-level hierarchical 

architecture, which ensures the decomposition of control 

tasks and the optimization of computational load. The 

schematic diagram of the electrical connections of the 

system components is presented in Fig. 1. 

 

Fig. 1. Schematic diagram of the electrical connections of the system components 
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A Raspberry Pi 4 Model B single-board 

computer (Raspberry Pi Foundation, UK) was selected 

as the central control module. The choice of this 

platform is justified by its optimal balance of 

computational power (ARM Cortex-A72 architecture) 

and energy efficiency. The availability of a hardware 

Camera Serial Interface (CSI) provides direct access 

to the video core, thereby minimizing latency during 

video stream processing and reducing the load on the 

central processing unit (CPU) during the execution of 

computer vision algorithms. 

Real-time control functions for the actuation 

equipment are assigned to an ESP32 DevKit V1 

microcontroller (based on the ESP32-WROOM-32 

chip by Espressif Systems, PRC). The system 

architecture provides for load distribution between the 

two microcontroller cores: the first core handles 

communication (WiFi/UART), while the second is 

dedicated to generating PWM signals for the drivers 

and sensor polling. This approach guarantees the 

determinism of the control process and the operational 

stability of the actuators, even in the event of latency 

within the data transmission channel. 

Power supply for the mobile platform is provided 

by a battery pack consisting of 18650 lithium-ion cells 

(2S configuration, nominal voltage 7.4 V, capacity 3000 

mAh). To ensure a stable power supply for low-voltage 

logic circuits, a step-down switching DC-DC converter 

based on the LM2596 IC with a 5 V output voltage was 

utilized [14]. Control of the electric motor power circuits 

is implemented using an L298N driver, which provides 

current switching of up to 2 A per channel. 

 

2.3. Features and Algorithm for End-Effector 

Positioning Control 

A key task of the system following the detection 

of a target object (weed) is the transformation of its 

screen coordinates into a corresponding control signal 

for the actuation mechanism. This requires the 

alignment of two reference frames: the Cartesian 

coordinate system of the digital image, where position 

is defined in pixels (with the axis directed to the 

right), and the polar coordinate system of the 

manipulator, where the angle is measured relative to 

the robot's longitudinal axis. 

To ensure high targeting speed without 

employing resource-intensive iterative inverse 

kinematics algorithms, a Direct Mapping coordinate 

method is proposed. The rotation angle of the servo 

drive output shaft,  is determined via an affine 

transformation of the horizontal coordinate of the 

object's center, x, within the image coordinate system. 

The calculation formula is expressed as follows: 

 (3) 

where  – represents the frame width in pixels; , 

 – denote the limiting angles of servo drive 

rotation (physical operating range); and x corresponds 

to the current horizontal coordinate of the detected 

object's center of mass [15]. 

The physical interpretation of expression (3) is as 

follows: the ratio  normalizes the object's 

coordinate, mapping it to the dimensionless range [0; 

1]. The multiplier  scales the obtained 

value according to the manipulator's operating sector. 

The operation of subtraction from the upper limit  

implements the necessary mirror inversion of the 

control signal. This compensates for the directional 

discrepancy between the axes, since, in the standard 

image coordinate system, the X-axis is oriented from 

left to right, whereas an increase in the servo rotation 

angle mechanically corresponds to counter-clockwise 

rotation. 

 

3. SOFTWARE IMPLEMENTATION 

3.1. Selection of Neural Network Architecture 

The computer vision module constitutes a pivotal 

component of the system. A comparative analysis of 

contemporary lightweight neural network 

architectures was conducted to select the optimal 

model (Table 1). 

Table 1. Comparative analysis of neural network architectures for edge devices 

Architecture Model Size (FP32), MB mAP@0.5 (COCO), % Inference Time (RPi 4 

CPU), ms 

MobileNet SSD v2 14.0 22.1 ~85 

YOLOv5 Nano 3.9 28.0 ~110 

YOLOv8 Nano 6.2 37.3 ~135 
 

 

Based on the analysis presented in [16, 17], the 

YOLOv8 Nano architecture was selected, as it 

provides the highest accuracy while maintaining 

acceptable processing speed. To optimize execution on 

the CPU, the model was converted to the ONNX 

format employing dynamic quantization (INT8). This 

transformation resulted in a reduction of inference 

time to 65–70 ms. 

3.2. Neural Network Detection (YOLOv8) 

The core of the computer vision subsystem is the 

YOLOv8 Nano architecture. The selection of this model 

is justified by its high computational efficiency on 

embedded systems (Edge Devices). It is a one-stage 
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detector utilizing an anchor-free approach, which 

simplifies the training process and accelerates inference. 

Model training was conducted on a specialized 

dataset comprising 10,000 images representing 

various vegetative stages of weeds and crop plants. To 

enhance the robustness of the detector, data 

augmentation techniques were employed, including 

affine transformations, brightness histogram 

equalization, noise injection, and Mosaic 

augmentation. 

The objective Loss Function is defined as the 

weighted sum of three components: 

(4) 

where   – represents the bounding box regression 

loss (based on the IoU metric),  – enotes the binary 

cross-entropy for the classification task, and  – 

corresponds to the Distribution Focal Loss utilized for 

object boundary refinement [18]. 

In the practical implementation, the weighting 

coefficients  in formula (4) were defined in 

the hyperparameter configuration file hyp.yaml as 

follows: box: 7.5 (prioritizing boundary precision), cls: 

0.5 (classification), and dfl: 1.5. This configuration 

allowed the training emphasis to be shifted toward the 

precise positioning of the end-effector. 

For deployment on the Raspberry Pi platform, 

the model was exported to the ONNX format utilizing 

dynamic weight quantization (INT8). This resulted in 

a reduction of the model size to 6 MB and a 2.5-fold 

increase in inference speed on the CPU compared to 

the original PyTorch implementation. 

3.3. Communication Protocol and Low-Level 

Control 

The interaction between the high-level system 

(Raspberry Pi) and the low-level controller (ESP32) is 

implemented via a UART interface (Baud Rate: 

115200). To ensure data integrity, an application-layer 

protocol based on the JSON structure was developed: 

{  

"cmd": "move",  

"val": [0.5, -0.2], 

 "tool": 1,  

"id": 1024, 

"crc": "a1b2"  

} 

The ESP32 firmware is built upon the FreeRTOS 

real-time operating system. The firmware architecture 

entails the parallelization of processes into three 

prioritized tasks: 

1. MotionTask (High Priority): Execution 

interval of 10 ms. Implements a digital PID controller 

for wheel rotational speed based on feedback from 

quadrature encoders. 

2. SensorTask (Medium Priority): Acquisition 

and filtration of data from the inertial measurement 

unit (MPU-6050) utilizing a Kalman filter for 

orientation estimation. 

3. CommTask (Low Priority): Asynchronous 

processing of the UART input buffer, parsing of JSON 

packets, and updating of state variables. 

The discrete implementation of the motor control 

law is described by the following equation: 

(5) 

where e(k) denotes the velocity error at the k-th time 

step. The coefficients and  were 

experimentally determined using the Ziegler-Nichols 

method to ensure an aperiodic transient response. 

The software implementation of this control law 

in C++ within the FreeRTOS environment for the 

ESP32 microcontroller is provided below: 

// PID controller implementation (MotionTask 

fragment) 

float compute_pid(float target, float current, float 

dt) { 

    float error = target - current; 

    static float integral = 0, prev_error = 0; 

     

    integral += error * dt; 

    float derivative = (error - prev_error) / dt; 

     

    // Equation (5) implementation 

    float output = (Kp * error) + (Ki * integral) + 

(Kd * derivative); 

     

    prev_error = error; 

    return constrain(output, -255, 255); 

} 

3.4. Human-Machine Interface (HMI) 

To facilitate system monitoring and control, a 

web-based interface built upon the Flask framework 

(Python) was developed. The utilization of WebSocket 

technology (SocketIO library) enables the 

transmission of the video stream featuring detection 

overlay masks, alongside telemetry data (battery 

charge, coordinates, status), to the client browser with 

a latency of less than 100 ms. 

3.5. System Operation Algorithm 

To implement the autonomous execution of 

agrotechnical operations, a control algorithm 

functioning on the principle of a closed-loop feedback 

system was developed. The system logic encompasses 

a sequence of data processing stages, ranging from 

sensor data acquisition to the generation of control 

inputs for the actuators. 

The initial stage involves loading the YOLOv8 

neural network weights into the onboard computer's 

RAM, configuring UART interface parameters for 

communication with the low-level controller, and 

calibrating the Inertial Measurement Unit (IMU) to 

establish the zero horizon. 

The system captures a frame from the camera via 

the CSI interface. To ensure compatibility with the neural 

network's input layer, image resizing to a resolution of 
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320×320 pixels, pixel value normalization, and color 

space conversion are performed. 

Subsequently, model inference is executed for 

object detection. The algorithm filters results based on 

a confidence threshold ($P > 0.6$). Upon detection of 

an object of the "Weed" class, the coordinates of its 

geometric center are computed, the manipulator 

rotation angle is calculated (Equation 3), and an 

action: destroy command is generated. Conversely, the 

detection of a "Crop" class object activates a Safety 

Mask. Based on the analysis of free space within the 

inter-rows, a vector of linear ($v$) and angular 

($\omega$) velocities is calculated for course 

correction. The data are serialized into JSON format 

and transmitted to the ESP32 for execution by the PID 

controller. A graphical representation of the developed 

algorithm is presented in Fig. 2.  

 

Fig. 2. Flowchart of the agricultural robot control system operation algorithm 
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A Python code fragment performing this 
coordinate mapping on the Raspberry Pi onboard 
computer is presented below: 

def get_servo_angle(bbox_center_x, 
frame_width=320): 

    # Practical implementation of formula (3) 
    # Coordinate normalization and inversion for 

the servo drive 
    norm_x = bbox_center_x / frame_width 
    angle = THETA_MAX - (norm_x * 

(THETA_MAX - THETA_MIN)) 
    return int(angle) 
 

3.6. Structural Implementation of the Physical 

Prototype 

To experimentally validate the theoretical 
calculations and the proposed control algorithms, a 
functional physical prototype of the mobile agricultural 
robot was developed and fabricated. The general view 
of the constructed prototype and the layout of its 
primary components are presented in Fig. 3. 

Structurally, the robot is based on a four-wheel 
drive (4WD) chassis utilizing differential steering. 
This configuration ensures high maneuverability and 
the capability to perform zero-radius turns within 
confined inter-row spaces. The overall dimensions of 
the platform are 260×160×150 mm. 

 
Fig. 3. Hardware layout of the experimental 

agricultural robot prototype 
 

The component layout is implemented using a 

two-tier configuration, enabling the separation of 

power and logic circuits: 

• Lower Level (Power): This tier houses four 

brushed DC motors equipped with gearboxes (gear 

ratio 1:48) and the L298N motor control driver. This 

arrangement, combined with the placement of the 

battery pack in the lower section of the chassis, lowers 

the center of mass, thereby ensuring the platform's 

kinematic stability when traversing uneven terrain. 

• Upper Level (Computational): This tier 

contains the control electronics, specifically the 

Raspberry Pi 4 single-board computer and a 

prototyping board for signal line routing. As illustrated 

in Fig. 3, peripheral connections are established using 

flexible jumper wires, facilitating rapid 

reconfiguration of the circuit during the debugging 

process. 

The optical system (Raspberry Pi Camera v3 

module) is mounted at the frontal section of the robot. 

It is connected via a flexible ribbon cable (CSI), 

minimizing data transmission latency, which is critical 

for real-time neural network operation. Additionally, 

an ultrasonic rangefinder is installed on the front panel 

to implement an emergency stop mechanism upon 

obstacle detection. 

 

4. Experimental Results 

Field trials were conducted on a test site 

featuring mixed vegetation under natural lighting 

conditions (sunny/cloudy). The objective of the 

experiments was to verify detection accuracy, system 

response speed, and energy efficiency. 

 

4.1. Analysis of Computer Vision Efficiency 

The performance results of the detection 

algorithm are presented in Fig. 4. The model 

demonstrated a high generalization capability, 

successfully detecting weeds even under conditions of 

partial occlusion by crop leaves. 

Red bounding boxes indicate weed classification, 

while green bounding boxes designate crop plants. 

To evaluate classification quality, the mAP@0.5 

metric (mean Average Precision at an Intersection over 

Union (IoU) threshold of 0.5) was utilized. Validation 

results on the test dataset demonstrated an mAP value 

of 92.4%. The Confusion Matrix revealed that the 

majority of errors were attributed to False Positives 

(FP) involving grass species with similar textures; this 

issue can be mitigated by expanding the dataset [16]. 

An analysis of temporal characteristics indicated 

that the transition to the ONNX Runtime execution 

environment with an input resolution of 320×240 

pixels (optimal for inference) enabled the achievement 

of a stable frame rate of 14.5 FPS.  

Concurrently, detection accuracy on the 

validation dataset was maintained at mAP@0.5 = 

92.4%. The total system latency within the control 

loop (Camera → RPi → ESP32 → Motor) is 

approximately 65–75 ms, which permits the robot to 

travel at velocities of up to 0.5 m/s without 

compromising processing quality.  

Due to the implementation of sensor fusion 

algorithms combining odometry and Inertial 

Measurement Unit (IMU) data, the platform 

positioning error does not exceed ±2.5 cm. 

 

4.2. Analysis of Energy Efficiency 

Power consumption measurements taken during 

field trials recorded an average load of 18–22 W in the 

active patrolling mode. The primary energy 

expenditure is attributed to the operation of the 

traction motors during locomotion over soil and the 

power supply of the Raspberry Pi computing module. 

The installed battery capacity (3000 mAh, ~22 Wh) is 

sufficient for 45–60 minutes of autonomous operation. 

While this metric is adequate for maintaining 
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homestead plots, industrial implementation requires 

the optimization of the power supply system, 

specifically through the integration of photovoltaic 

panels or an automated charging station. 

 

4.3. Analysis of Accuracy and Neural Network 

Training 

In the second stage, the training and validation of 

the neural network were conducted. The dynamics of 

the Mean Average Precision (mAP) over 100 training 

epochs are illustrated in Fig. 5.     

 

Fig. 4. Results of object detection by the neural network under real-world conditions: (a) Redroot pigweed (Amaranthus 

retroflexus), 97%; (b) Field bindweed (Convolvulus arvensis), 95%; (c) Jimsonweed (Datura stramonium), 95%; 

(d) Sugar beet (Beta vulgaris), 91%; (e) Sunflower (Helianthus annuus), 89%; (f) Winter rye (Secale cereale), 

89%. 

 

 
Fig. 5. Neural network training dynamics (metrics mAP@0.5 and mAP@0.5:0.95). 

 

 

The mAP@0.5 curve (green line) exhibits a 

plateau at the 0.96–0.97 level subsequent to the 60th 

epoch, indicating the stability of the training process 

and the absence of overfitting. This validates the 

appropriateness of the selected hyperparameters and 

the data augmentation strategy employed [19]. 

To conduct a detailed analysis of classification 

errors, a normalized Confusion Matrix was generated, 

as presented in Fig. 6. This facilitates the assessment 

of recognition accuracy for each individual class. 

The diagram indicates that the recognition 

accuracy for the target class "Weed" is 92%, while 

false negatives (misclassifying a weed as a crop) 

constitute only 3%.  

 

mailto:mAP@0.5:0.95
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Fig. 6. Normalized Confusion Matrix 

 

The misclassification of a crop as a weed (False 

Positive) stands at 2%, which is an acceptable metric 

for automated weeding systems [20], as it minimizes 

the risk of crop damage.    

Based on the obtained data, the integral 

performance metrics of the system were calculated 

using the test dataset: Precision was 0.934, and Recall 

was 0.964. The overall Mean Average Precision 

(mAP@0.5) reached 92.4%.    

 

Conclusions 

This paper proposes a comprehensive solution to 

the topical scientific and technical problem of weeding 

automation, implemented through the creation of a 

cyber-physical system that combines deep learning 

methods with embedded control algorithms. 

The primary scientific outcome of the study is 

the substantiation and implementation of a two-level 

control architecture, wherein the distribution of 

computational load between the high-level module 

(Raspberry Pi) and the real-time controller (ESP32) 

addressed the resource-intensive nature of computer 

vision algorithms. This configuration ensured the 

requisite performance for neural network inference 

while maintaining the strict determinism of control 

signal generation, which is critical for platform motion 

safety. 

The efficacy of utilizing quantized models has 

been experimentally proven: the application of the 

YOLOv8 Nano architecture in INT8 format enabled a 

video stream processing speed of 14.5 FPS on 

general-purpose processors without the involvement 

of specialized hardware accelerators. This confirms 

the feasibility of real-time system operation while 

maintaining low hardware costs. Concurrently, the 

implementation of the kinematic model in conjunction 

with PID speed control ensured motion stability over 

uneven terrain and mitigated the impact of wheel 

slippage during maneuvering in confined spaces. 

Future development of the project envisions the 

integration of an RTK-GPS module to achieve 

centimeter-level global positioning accuracy, as well 

as the development of a laser system for the non-

contact elimination of weeds, which will minimize 

mechanical and chemical impact on the soil.  
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СИСТЕМА КЕРУВАННЯ МОБІЛЬНИМ АГРОРОБОТОМ НА ОСНОВІ 

НЕЙРОМЕРЕЖЕВОЇ ДЕТЕКЦІЇ ОБ'ЄКТІВ 
У роботі вирішується актуальна науково-технічна задача автоматизації процесів догляду за сільськогосподарсь-

кими культурами в контексті парадигми Precision Agriculture 4.0.  

Метою дослідження є розробка архітектури та дослідження ефективності бюджетної кіберфізичної системи 

(CPS) для автономного моніторингу посівів та точкового фізичного знищення бур'янів у режимі реального часу. 

Це дозволяє мінімізувати використання хімічних гербіцидів, вирішуючи проблему резистентності шкідливих 

рослин та екологічного навантаження на ґрунти.  

Авторами запропоновано та реалізовано дворівневу ієрархічну систему керування мобільним агророботом. Вер-

хній рівень обчислень базується на одноплатному комп'ютері Raspberry Pi 4 Model B, який виконує задачі ком-
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п'ютерного зору та стратегічного планування. Для семантичної сегментації рослинного покриву обґрунтовано 

вибір нейромережевої архітектури YOLOv8 Nano.  

Застосовано комплекс методів оптимізації для Edge-пристроїв: конвертацію моделі у формат ONNX та динаміч-

не квантування ваг до формату INT8, що дозволило зменшити розмір моделі до 6 МБ та забезпечити стабільний 

інференс на CPU. Навчання мережі проводилося на датасеті з 10 000 зображень із використанням функції втрат, 

що комбінує метрику IoU, бінарну крос-ентропію та Distribution Focal Loss. Нижній рівень керування реалізова-

но на мікроконтролері ESP32 (архітектура Dual Core) під керуванням операційної системи реального часу 

FreeRTOS. Розроблено багатопотокове програмне забезпечення, що розділяє задачі комунікації, опитування 

інерціальних датчиків (IMU) та генерації ШІМ-сигналів.  

Реалізовано дискретний PID-регулятор для стабілізації кутових швидкостей коліс платформи з диференціаль-

ним приводом, що нівелює похибки від проковзування на ґрунті. Взаємодія між рівнями здійснюється через 

UART-інтерфейс (115200 бод) за авторським протоколом на базі JSON. Для керування маніпулятором запропо-

новано метод прямого відображення координат (Direct Mapping), що виключає необхідність ресурсомістких 

обчислень оберненої кінематики. Результати польових випробувань підтвердили високу ефективність системи: 

досягнуто точність детекції mAP@0.5 на рівні 92.4% при середній швидкості обробки кадру 65–70 мс (14.5 

FPS). Загальна затримка в контурі керування не перевищує 75 мс, а похибка позиціонування платформи стано-

вить ±2.5 см.  

Енергетичний моніторинг показав споживання на рівні 18–22 Вт, що забезпечує до 60 хвилин автономної роботи. 

Ключові слова: агроробот, YOLOv8, Precision Agriculture 4.0,, ESP32, Raspberry Pi, Computer Vision, PID-

регулятор, Boustrophedon, FreeRTOS. 
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