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The paper presents a hybrid method for segmenting 3D point clouds for the calibration of cylindrical horizontal
tanks, combining RANSAC and DBSCAN algorithms with subsequent boundary refinement based on local geometric
features.

Analysis of prior research indicates that RANSAC is effective for detecting cylindrical surfaces but sensitive to
noise, while DBSCAN excels in clustering noisy data but requires parameter optimization. Hybrid methods combining
these algorithms demonstrate improved results; however, their robustness to low-density point clouds and accuracy in
transition zones remain underexplored. The objective of this study is to develop and evaluate a hybrid 3D point cloud
segmentation method integrating RANSAC, DBSCAN, and boundary refinement to achieve automated tank calibration
with high accuracy across densities levels ranging from ~1 million to ~18 million points.

The research results are based on a comparison of a scanned model (18,012,345 points at maximum density) and
an ideal model (17,986,543 points) of the tank. The hybrid method enabled precise estimation of geometric parameters:
radius (R = 1.5 m, error £0.03 m) and length (L = 10.8 m, error £0.05 m). The segmentation identified the front bottom
(372,890 points, ~2.07 %), rear bottom (411,230 points, ~2.28 %), and noise (2,181,240 points, ~12.1 %). The
proportionality of point reduction for bottoms with decreasing density was confirmed by linear approximation (Fig. 1):
slopes of ~20,700-22,800 points/million for the scanned model and ~20,900-217,100 for the ideal model, with R* =
0.999. Relative segmentation errors range from 0.1-0.7 % for the front bottom and 8.3-8.9 % for the rear bottom,
indicating higher accuracy for the front bottom and a need for improvement in the rear bottom. The stability of noise
(~12.1-12.2 %) confirms the effectiveness of DBSCAN. The method maintained accuracy even at low density (~1
million points), although the increased error for the rear bottom (~8.75 %) suggests potential loss of detail.

In conclusion, the developed hybrid method is robust to noise, scalable for densities levels of 1-18 million points,
and suitable for automated tank calibration. The proportionality of components and stable noise level highlight the
method’s reliability, while visualization (cylinder — red, front bottom — green, rear bottom — blue) illustrates clear
component separation. Future research may focus on optimizing DBSCAN for low-density point clouds and reducing
errors for the rear bottom in transition zones.

Keywords: point cloud; hybrid algorithm; geometric modeling; segmentation; tank calibration; laser scanning.

Introduction

Processing 3D point clouds is a critical task in
modern computer vision, robotics, and engineering.
Point clouds obtained through laser scanning or
photogrammetry often represent complex objects with
diverse geometric shapes, such as cylinders, planes, or
spheres. In particular, accurate modeling of cylindrical
structures, which are common in technical
constructions (e.g., pipes, tanks, shafts), plays a vital
role in tasks such as reconstruction, quality control,
and automated design. However, the presence of
noise, data heterogeneity, and the complexity of
transition zones between different object parts
complicate the segmentation and analysis process.

Currently, several methods exist for processing
3D point clouds. Among them, RANSAC (Random
Sample Consensus) effectively estimates the
parameters of geometric primitives, while clustering
algorithms like DBSCAN enable grouping points
based on spatial proximity. However, these methods,

when used independently, do not always provide
sufficient accuracy and robustness to noise,
particularly when dealing with objects composed of
cylindrical parts and adjacent bottoms. This creates a
need for hybrid approaches that combine the strengths
of different algorithms.

The objective of this article is to develop and
demonstrate a hybrid method for processing 3D point
clouds, which integrates RANSAC for initial
estimation of the cylindrical part’s parameters (radius,
axis), followed by clustering of the remaining points
using DBSCAN to identify bottoms and remove noise,
and boundary refinement between the cylinder and
bottoms based on local geometric features. The
proposed approach aims to enhance segmentation
accuracy and robustness to noisy data

Literature review
Processing 3D point clouds for modeling
geometric objects, such as cylindrical horizontal tanks,
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is critical for calibration and volume estimation [1].
The literature describes numerous methods for point
cloud segmentation and analysis, including
approaches based on geometric primitive estimation,

clustering, and hybrid strategies [2]. These methods
are often compared in terms of accuracy, robustness to
noise, and computational efficiency, as shown in
Table 1.

Table 1: Comparison of Point Cloud Segmentation Methods

arbitrary shapes

Method Advantages Disadvantages A Typical
pplications
RANSAC Rot_Just to 0u_t|igr_s, Struggles_vyith complex Cylinder d_et_ection,
effective for primitives | shapes, sensitive to threshold plane fitting
DBSCAN Handles noise, clusters Requires parameter tuning, Noise removal,

issues with varying density

cluster identification

Hough Transform Effective for shapes, no

Computationally expensive,

Shape detection in

initial assumptions sensitive to noise clean data
. . Based on smoothness, | Fails in noisy data, connectivi- Surface .
Region Growing intuitive tv iSsues segmentation, object
y extraction

High accuracy, auto-

Deep Learning matic feature learning

Requires large datasets, high
computational cost

Complex scene
understanding,
classification

RANSAC, introduced by Fischler and Bolles [3],
is a robust algorithm for fitting geometric primitives,
such as planes, cylinders, and spheres, to point clouds,
even in the presence of noise. It is widely used for
detecting cylindrical shapes, such as those in industrial
components [4]. However, RANSAC may struggle
with complex shapes or multiple similar forms, and its
performance depends on the choice of threshold and
number of iterations [5].

DBSCAN, proposed by Ester et al. [6], is a density-
based clustering algorithm that groups points by spatial
proximity, making it suitable for identifying arbitrarily
shaped clusters and removing noise. It has been applied
in point cloud processing for scene segmentation tasks
[7]. Its main limitation is the need for careful parameter
tuning, which can affect performance in scenarios with
varying densities [2].

Other methods include the Hough Transform,
which is effective for shape detection but
computationally expensive and less robust to noise
compared to RANSAC [8]. Region-growing approaches,
as described by Vo et al. [9], can segment point clouds
based on smoothness but may fail in noisy conditions.
Deep learning methods, such as those by Liu et al. [10],
offer high accuracy but require large datasets and
significant computational resources, making them less
practical for some industrial applications.

Accurate calibration of cylindrical tanks using point
clouds is a key task in industrial measurements. For
instance, Samoilenko and Zaets [11] developed a method
for calibrating tanks and ship cisterns for liquid storage
and transportation, using laser scanning to generate point
clouds and estimate volume. This approach provides
accurate modeling of cylindrical shapes but lacks
detailed segmentation of non-cylindrical parts, such as
bottoms, limiting its applicability for comprehensive
analysis of complex structures. Our method extends these
capabilities by incorporating clustering to process all tank

components, including transition zones [7].

Combining primitive estimation and clustering
methods, such as RANSAC and DBSCAN, is gaining
popularity due to their ability to address complex
segmentation tasks. For example, Chen et al. [12]
developed a hybrid algorithm for segmenting point
clouds in building structures, where RANSAC is used to
detect primary geometric shapes, and DBSCAN
classifies residual points. Our method adapts this strategy
to tanks, adding boundary refinement based on normals
and curvature, which improves accuracy in transition
zones between the cylinder and bottoms [2].

The choice of RANSAC in our study is driven by
its proven effectiveness in detecting cylindrical shapes in
noisy data, as demonstrated in industrial modeling tasks
[4]. DBSCAN was selected for its ability to efficiently
remove noise and segment tank bottoms, as supported by
studies on complex scene segmentation [7]. Unlike the
Hough Transform, which is less robust to noise [8], or
deep learning methods that demand significant resources
[10], our hybrid approach achieves a balance between
accuracy and practicality for real-world applications.

Most studies [11] focus on fitting cylindrical
models, neglecting detailed segmentation of tank
bottoms, which can affect calibration accuracy.
Meanwhile, hybrid methods described by Chen et al. [12]
are not tailored to tank-specific requirements. Our
method addresses this gap by integrating RANSAC and
DBSCAN with additional boundary refinement, offering
a comprehensive solution for processing point clouds of
cylindrical tanks [5].

Methodology

The proposed hybrid method for processing 3D
point clouds of cylindrical horizontal tanks consists of
three main stages: estimation of the cylindrical part’s
parameters using RANSAC, clustering of the remaining
points using DBSCAN, and refinement of boundaries
between the cylinder and bottoms based on local
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geometric features. Below is a detailed description of
each stage with the corresponding mathematical
foundations.

1. RANSAC for the Cylindrical Part
In the first stage, the RANSAC algorithm is
applied to estimate the parameters of the tank’s
cylindrical part: radius R and the cylinder’s axis,
defined by a direction vector d and a point on the axis
po. Let P = {p;} be the set of points in the point
cloud, where p; = (x;,y;, z;)- The goal is to find a
subset of points (inliers) that belong to the cylinder.
= Random Point Selection: A minimal
number of points (e.g., 3) is selected to estimate the
cylinder. For three points pi, p2, ps , the axis d is
determined as the normalized cross-product vector:
_ _(P2mpxP3—P1) 1)
l(pz—p)*x(P3—PIl
The point po is taken as the mean: (p1+p2+ps)/3.
= Radius Estimation: For each point p;, the
distance to the cylinder axis is calculated as:
d; = l|(pi — Po) — [(Pi — Po) - d]dl| - (2)
The radius R is estimated as the median of the
distances d; for the selected points.
= Inlier Classification: A point p; is considered
an inlier if |di—RI<e , where € is a threshold (e.g., 0.01 m).
The number of RANSAC iterations is determined by:
_ log(1—p) (3)
log(1-wk)
where p=0.99 is the desired probability of success, w
is the fraction of inliers, and k = 3 is the number of
points in the sample.
The result is a set Pg, representing the
cylindrical part and Prest=P\Pcyi the remaining points.

2. DBSCAN for Clustering

In the second stage, the remaining points P are
clustered using DBSCAN to identify bottoms and
remove noise. DBSCAN groups points based on
density, using two parameters: neighborhood radius €
(e.g., 0.05 m) and the minimum number of points in a
cluster minPts (e.g., 10).

= Neighbor Identification: For each point its
neighborhood is computed:

NP = {p) € Prese | [lpi —psll <€} )
If | Nc(p;) |= MinPts, the point is considered

a "core" point.

= Cluster Formation: Core points are merged
into clusters by expanding their neighborhoods. Points
that do not belong to any cluster are labeled as noise.

= The result is a set of clusters {C1,C2,...},
where C; and C; are identified as bottoms (based on
their position relative to the cylinder axis), and the rest
are discarded as noise.

3. Boundary Refinement
In the final stage, transition zones between the
cylinder Py and bottoms C; and C; are analyzed to

refine  boundaries. Local geometric features,
specifically normals and curvature, are utilized.

= Normal Estimation: For each point pi, the
normal n; is computed using principal component
analysis in its k-nearest neighborhood (e.g., (k = 20)).
The covariance matrix is:

1 - _
M=_Y_pj-p)p-n" O
where p is the centroid of the neighborhood. The

smallest eigenvalue of M corresponds to n;.

= Curvature Analysis: Curvature «; IS
estimated as:

— ‘10
i = ©

where Ao, A1, A2 are the eigenvalues of M in ascending
order.

= Boundary Determination: Points in Pgy, Ci
and C; near the boundary are compared based on the
difference in normals [Ini—n;ll and curvate. The
boundary is refined if «; exceeds a threshold (e.g., 0.1)
and the angle between normals is greater than 30°.

Thus, the computation results in a clear
separation of the tank into its cylindrical part and
bottoms.

Results

Processing the 3D point cloud of a scanned model
of a cylindrical horizontal tank (Fig. 1) enabled the
determination of its geometric parameters and
segmentation into the cylindrical part, front bottom, and
rear bottom.

Fig. 1. 3D point cloud of the scanned tank

The tank scan generated a point cloud with
10,293,482 points. Analysis results indicate that the
cylinder radius (R) is approximately 1.5 m with an
error of £0.03 m, and the length (L) is approximately
10.8 m with an error of £0.05 m, determined during
the parameter estimation stage using RANSAC. The
hybrid method, combining RANSAC, DBSCAN, and
boundary refinement, successfully segmented the
point cloud: the front bottom comprises 213,115
points, the rear bottom 235,082 points, and 1,245,678
points were identified as noise (determined during the
DBSCAN stage). The difference in point counts
between the bottoms may be attributed to non-uniform
scanning or minor surface deformations.

During the RANSAC stage, the radius estimation
error was +0.03 m due to noise and potential deviations
in selecting reference points, while the length error

Bicnux KIII. Cepia IIPUIAOBEYYBAHHA, Bun. 69(1), 2025 77



ISSN (p) 0321-2211, ISSN (e) 2663-3450
__ Aemomamusauis ma iHmMeNeKMyanizayia npunadooyoyéanna

(£0.05 m) was related to inaccuracies in determining the
cylinder axis. The application of DBSCAN for clustering
the remaining points resulted in a segmentation error of
approximately 5%, influenced by sensitivity to model
tuning parameters, which led to some points being
classified as noise instead of bottom clusters. Boundary
refinement based on normals and curvature reduced the
number of misclassified points by 2—3 %, improving the
accuracy of separating the cylinder and bottoms.

For comparison, an ideal tank model (Fig. 2) was
created with parameters derived from the scanned model:
radius (R) = 1.5 m and length (L) = 10.8 m. The total
number of points in this model is 9,985,432, reflecting a
uniform distribution without noise.

Within the ideal model, the front bottom contains
208,000 points, and the rear bottom 210,500 points; there
are no noise points, as the model is theoretically
idealized. Errors in the ideal model are absent, as it is
based on precise geometric parameters without external
influences.

Fig. 2. Ideal tank model

The effectiveness of the hybrid method is
confirmed by the segmentation results of both models.
Figure 3 presents a visualization of the tank with
segmented components. The visualization
demonstrates the method’s ability to accurately
segment tank components despite noise and data
irregularities. To evaluate the robustness of the hybrid
segmentation method (RANSAC + DBSCAN +
boundary refinement), a comparative analysis of
segmentation results was conducted for point clouds

with varying densities levels.

Fig. 3. Segmentation of the tank model: cylindrical part of the scanned model (red), front bottom of the scanned
model (green), rear bottom of the scanned model (blue), cylindrical part of the ideal model (yellow), front bottom
of the ideal model (cyan), rear bottom of the ideal model (purple)

The study is based on two models: the scanned
tank and the ideal model. The number of points was
gradually increased and decreased for both models.
For each density level, the number of points belonging
to the front and rear bottoms, as well as noise points,
was determined. For the scanned model, random
subsampling was used, while for the ideal model, the
point count was proportionally reduced due to its
uniformity.

The segmentation results for different density
levels are presented in Table 2.

Analysis of Results

1. Proportionality of Point Reduction

e The data in Table 2 demonstrate a clear
proportionality in the reduction of points for the front
and rear bottoms as the point cloud density decreases
(from ~18 million to ~1 million points). For the
scanned model, the proportion of points for the front
bottom ranges from ~2.07-2.08 %, and for the rear
bottom from ~2.28-2.29 % of the total point count
across all density levels. For the ideal model, these
values are more stable: ~2.08 % for the front bottom
and ~2.11 % for the rear bottom.
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Density Total Points Front B.’Ot' Rear B.Ot' Nqise Total Points BFortct)cr)]rtn Rear B.Ot'

Level (Scanned) tom Points | tom Points Points (Ideal) Points tom Points
(Scanned) | (Scanned) | (Scanned) (Ideal) (Ideal)
~18million | 18,012,345 372,890 411,230 | 2,181,240 | 17,986,543 | 374,200 379,450
~15million | 15,128,976 313,250 345,420 | 1,834,560 | 15,021,789 | 312,600 317,100
~12million | 12,087,654 250,320 276,090 | 1,465,080 | 11,008,123 | 250,100 253,750
Initial 10,293,482 213,115 235,082 | 1,245,678 | 9,985,432 208000 210,500
~8million | 8,125,328 168,230 185,420 980,120 | 7,890,123 164,200 166,800
~5million | 5,012,345 103,890 114,560 605,340 4,992,716 104,000 105,250
~3million | 3,001,234 62,340 68,720 362,890 | 2,996,845 62,400 63,200
~1million 1,002,345 20,780 22,910 121,080 998,543 20,800 21,050

This proportionality indicates the method’s Slopes of the Lines:

robustness to changes in density. The RANSAC
and DBSCAN algorithms accurately identify
geometric components, while boundary refinement
maintains a stable point ratio. Minor deviations
(£0.01 %) in the scanned model may be attributed
to non-uniform point distribution due to noise.

2. Noise Stability
The percentage of noise in the scanned model
remains stable at ~12.1-12.2 % across all density
levels.
This noise stability confirms the effectiveness of
DBSCAN in isolating non-critical points. The
noise percentage does not increase at low densities,
indicating the method’s reliability even with
reduced resolution. This is particularly valuable for
industrial applications, where noise is a common
outcome of laser scanning.
Slight fluctuations (0.1 %) may affect accuracy in
transition zones between the cylinder and bottoms,
necessitating further optimization of clustering
parameters.

3. Relative Segmentation Errors
The relative error between the scanned and ideal
models for the point counts of bottoms ranges from
0.3-8.9 %.
The error for the front bottom is lower (0.1-0.7 %)
than for the rear bottom (8.3-8.9 %), possibly due
to non-uniform noise distribution or more complex
transition zones for the rear bottom. At low density
(~1 million points), the error remains acceptable,
but its increase for the rear bottom suggests
potential loss of detail.

4. Linear Approximation
The linear approximation graph of the number of
points for bottoms (Fig. 4) shows a linear
relationship between the total point count and the
number of points for bottoms.

o Scanned model: ~20,700 points/million (front
bottom), ~22,800 points/million (rear bottom).

o Ideal model: ~20,900 points/million (front
bottom), ~21,100 points/million (rear bottom).

o Coefficient of Determination (R?): Based on
regression, R? =~ 0.999 for all lines, indicating a
high fit of the linear model to the data.

e The close slope values for the scanned and ideal
models confirm that the method maintains
proportionality even in noisy data. Higher slopes
for the rear bottom reflect its larger point share
(~2.28% vs. ~2.07 %). The scanned model’s
deviation (75-77% from the ideal) is due to noise
but does not affect linearity.

5. Impact of Low Density

e At a density of ~1 million points (scanned:
1,012,584; ideal: 1,008,543), the method retains
the ability to identify bottoms (20,980 and 23,110
points for the scanned model), but the relative error
for the rear bottom (~8.75 %) indicates potential
detail loss. Therefore, scanning with a higher point
count is preferable.

Conclusions

The developed hybrid method, integrating
RANSAC and DBSCAN algorithms with boundary
refinement, has proven effective for segmenting 3D
point clouds of cylindrical horizontal tanks. Analysis of
the scanned model (10,293,482 points) enabled precise
determination of geometric parameters: radius (R = 1.5
m, error £0.03 m) and length (L = 10.8 m, error +0.05
m), as well as segmentation into the cylindrical part,
front bottom (213,115 points), and rear bottom
(235,082 points). Out of the total point count, 1,245,678
points (~12%) were classified as noise, confirming the
method’s ability to handle noisy data.
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Linear Approximation of Bottom Points vs. Point Cloud Density
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Fig. 4. Linear approximation of the number of bottom points as a function of the total point count in the point cloud for
scanned and ideal tank models (density from ~1 million to ~18 million points). Green and blue points correspond
to the front and rear bottoms of the scanned model, respectively, while cyan and purple points correspond to those

of the ideal model.

Errors at the processing stages — £0.03 m for
RANSAC radius estimation, 5% for DBSCAN
clustering, and 2-3 % for boundary refinement —
indicate the method’s stability even in challenging
conditions.

Comparative analysis with the ideal model
(initially 9,985,432 points, noise-free) across various
density levels (~8 million, ~5 million, ~3 million, ~1
million) showed that the number of points for bottoms
decreases proportionally in both models. In the
scanned model, the noise percentage remains stable
(~12%), and the relative deviation in point counts for
bottoms compared to the ideal model is 75-77 % due
to noise and data non-uniformity. The method
maintained  segmentation  accuracy even at
significantly reduced density (~1 million points),
although loss of detail may affect clustering quality in
such conditions.

The hybrid approach proved robust to noise,
capable of processing large datasets, and suitable for
automated tank calibration in industrial settings, where
noise and non-uniformity are common challenges.
Future research may focus on optimizing DBSCAN
parameters to reduce clustering errors at low point
densities and improving the boundary refinement
algorithm to enhance accuracy in transition zones..
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Hayionanonuii mexniunuii ynisepcumem Yrpainu « Kuiscokuu nonimexniynui incmumym

imeni lzops Cikopcokozoy, Kuis, Ykpaina

IHTETPOBAHMIA ITIAXIJT JIO CETMEHTAILIT 3D-XMAPH TOUYOK JIJI51 KAJIIBPYBAHH S
PE3EPBYAPIB

VY craTTi peacTaBiIeHO TiIOpUIHUN MeTon cerMeHTanii 3D-XxMap Todok i KamiOpyBaHHS MITIHAPUIHUX TOPU30HTA-
JIBHUX pe3epByapiB, sikuit moeanye anroputMt RANSAC i DBSCAN i3 moganbuiiM yToOYHEHHSIM MEX Ha OCHOBI JIOKa-
JIbHAX TEOMETPUYHHUX XapPAKTEPUCTHUK.

Anai3 noniepeHixX fociipkeHs nokasye, mo RANSAC edexkTHBHUI U1 BUSBICHHS LWIHAPUYHNAX MOBEPXOHb, aJle yT-
mBui o mrymy, Tofi sk DBSCAN moOpe BHKOHYe KIIaCTEpH3AIIEI0 3aIlyMIICHUX JaHUX, ajle MoTpeOdye omTuMi3arlii mapa-
MertpiB. ['IOpH/IHI METO/IH, SIKi TIOETHYIOTh LIl AITOPUTMH, AEMOHCTPYIOTh Kpallli pe3yJbTaTH, IpoTe iX CTIMKICTh 10 HU3bKO-
OIUTBHUX XMap 1 TOYHICTH Yy MEpeXiTHAX 30HaX 3aIHIIAIOTHECS HEIOCTATHRO JOCTiKeHUMH. MeTa poOOTH — pO3poOHTH Ta
OLIHUTH TiOpHIHNN MeTo] cermeHTanii 3D-xmap To4ok, o noeanye RANSAC, DBSCAN i yrouHeHHsT Mex, Ul aBTOMa-
THU30BAHOTO KaliOpyBaHHA pe3epPBYapiB i3 BUCOKOIO TOUHICTIO 32 MILTHHOCTEH Bi ~1 MIIH 110 ~18 MITH TOYOK.

PesynbraTi mociikeHb 0a3yloThesi Ha MOpiBHsIHHI ckaHoBaHOT (18,012,345 Touok nmpu MakCHMMalbHIN MIIIBHOCTI) Ta
ineanpHO1 (17,986,543 TOo4OK) Mozeneii pesepByapa. ['i0puaHIIA METOA JO3BOJIMB TOYHO OLIHUTH T€OMETPUYHI TTapaMme-
Tpu: pagiyc (R = 1.5 M, noxudka £0.03 m) i nosxuny (L = 10.8 M, noxudka £0.05 m). CermMeHTalist BUIIIHIA IEPEAHE
naumie (372,890 touok, ~2.07 %), 3ague mawme (411,230 touok, ~2.28 %) Ta mym (2,181,240 Touok, ~12.1 %). [Ipo-
MOPIiHICTH 3MEHIIICHHST TOYOK ISl JTHHMII 31 3HIDKEHHSIM II[UILHOCTI TiATBEp/DKEHA JIIHIIHOI0 anmpokcumaiiero (puc. 1):
Haxuiau ~20,700-22,800 Toyok/MiaH s ckaHoBaHoi Moaeni Ta ~20,900-21,100 mis igeansHoi, i3 R?2 = 0.999. BigHocHi
noxubku cermenranii cranoBysiTh 0.1-0.7 % st nepenuboro axuma ta 8.3-8.9 % aist 3a1HBOTO, 10 BKA3y€e Ha BHIILY
TOYHICTP JUTS MIEPEAHBOTO THUINA Ta TOTPeOy BIOCKOHAJICHHS s 3aAHb0T0. CTabimpHicTh mymy (~12.1-12.2 %) minr-
Bepmkye epextuBHicTe DBSCAN. Metop 30epiraB TOYHICTh HaBiTH NMPHW HU3BKIA HIUTBHOCTI (~1 MIH TOYOK), X04a
3pOCTaHHs NOXMOKH 33/IHBOTO THHUINIA (~8.75 %) curHalli3ye PO MOXKIIMBI BTPATH JieTaei.

OTxe, po3pobieHni TIOPUIHUI METOT € CTIMKUM JI0 IIyMY, MacIITabOBaHUM IS MIUTFHOCTEH 1—18 MIIH TOUYOK 1 TipH-
JATHUM JUTS aBTOMaTH30BaHOTO KaxiOpyBaHHS pe3epByapiB. [IpomopiiiiHicTh KOMIIOHEHTIB i CTaOLTBHUH MIyM MiAKpe-
CIIOIOTh HAJIMHICTE METO/Y, a Bisyasli3alis (LIIIHIP — YePBOHUM, NIEpeIHE THUIIE — 3eJICHUH, 3a/lHE — CHHIH) LIIOCT-
pye€ diTke po3MexyBaHHs. [loganbini JocimKeHHs MOXYTh 30cepeautucst Ha ontumizaiii DBSCAN aist HU3bKOIIiIb-
HUX XMap 1 3HIKEHHI MOXHOKY JUIsl 33/THHOTO JTHUINA B EPEXITHUX 30HAaX.
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