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Introduction. The development of advanced optimization methods plays a crucial role in the enhancement of
diagnostic tools in the biomedical field, particularly in the analysis of complex physiological signals.
Electroretinography (ERG) is a widely used diagnostic technique that records electrical responses generated by the
retina in response to light stimuli, providing valuable insights into the functional health of retinal cells. ERG is
instrumental in diagnosing conditions such as retinitis pigmentosa, diabetic retinopathy, and neurotoxicity. However,
the analysis of low-intensity electroretinograms (ERG) presents numerous challenges, particularly due to noise and
signal distortion, which complicate accurate signal interpretation.

Main purpose of this study.This paper is dedicated to developing an expert system for real-time analysis of
electroretinographic signals (ERS), focusing on optimizing the parameters of a mathematical model for ERS analysis in
conditions where noise and other distortions are present. The primary aim is to improve the accuracy and efficiency of
ERG data processing, enabling early detection of neurotoxicity and other retinal conditions. To achieve this, we applied
advanced optimization techniques, such as the Nelder-Mead method, known for its effectiveness in handling non-
smooth, noisy functions.

Conclusions. 1. The application of the Nelder-Mead algorithm for optimizing the complex and noisy ERS model
significantly improved the performance of ERG data analysis. The algorithm's adaptability to varying optimization
conditions allowed for more accurate model parameter determination, particularly in the context of real-time
neurotoxicity detection.

2. Reduction in Processing Time: The time complexity analysis revealed that the Nelder-Mead method reduced the
time required to compute the model coefficients by approximately 15%. This improvement was achieved while
maintaining the necessary precision for reproducing the test electroretinosignal, making it suitable for real-time
applications.

3. Computational Efficiency: One of the key findings of this study is that the use of the Nelder-Mead algorithm
reduced the computational load by up to 30%. This makes the method feasible for use in expert systems designed for
real-time ERS analysis, allowing for the monitoring of functional changes in the retina during the early stages of
neurotoxicity detection.

Keywords: electroretinogram, low intensity, neurotoxicity, optimization, parametric identification..

Introduction. Formulation of the problem

Electroretinography (ERG) is a diagnostic
method that measures the electrical responses of
various retinal cell types, including photoreceptors
(rods and cones), bipolar cells, and ganglion cells, to
light stimuli. The procedure involves placing
electrodes on the cornea to detect the electrical
activity generated by the retina in response to light
stimuli. This activity is recorded as a waveform,
which reflects the functionality of different layers of
retinal cells [1].

ERG is particularly important in ophthalmology
because it provides detailed information about the
health and functioning of the retina, enabling the
diagnosis and monitoring of various visual disorders.
For example, in conditions such as retinitis
pigmentosa — a group of genetic disorders leading to
progressive retinal degeneration — ERG can detect

functional decline in photoreceptors at early stages,
even before clinical symptoms appear [2]. Similarly,
in cases of elevated intraocular pressure, characterized
by damage to the optic nerve, ERG can help assess the
functional integrity of retinal ganglion cells, which are
often affected in the early stages of the disease.

Additionally, ERG is a critical tool in detecting
diabetic retinopathy, a common complication of
diabetes that affects the retinal blood vessels. Through
regular ERG testing, ophthalmologists can monitor
retinal function over time, enabling timely
interventions to prevent or mitigate vision loss. ERG
also plays a crucial role in assessing drug toxicity,
particularly for medications known to have potential
side effects on the retina, helping to detect neurotoxic
effects at an early stage [3-4].

The advancement of computer technology and
digital analysis has significantly expanded the
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capabilities of ERG. Modern ERG systems utilize
photostimulators, such as xenon lamps and LEDs, to
deliver controlled light stimuli with specific intensities
and wavelengths. This technological advancement
allows for standardized and reproducible testing
conditions, which are essential for accurate
diagnostics and longitudinal studies. Digital signal
processing techniques facilitate automated data
recording, enabling precise measurements of retinal
responses, including key morphological parameters
like amplitude and latency of the waveform
components.

Overall, the integration of ERG into clinical
practice has revolutionized the approach to early-stage
retinal  disease  diagnosis. By providing a
comprehensive assessment of retinal function, ERG
not only aids in the early detection of retinal
pathology but also deepens the understanding of the
underlying mechanisms of various retinal disorders.
This, in turn, facilitates the development of targeted
therapies with the potential to improve patient
outcomes through more personalized and timely
medical interventions.

Preliminary information

However, the study of electroretinograms
(ERGS), particularly at low light intensities, presents
several challenges that can affect the accuracy and
reliability of the results. Firstly, the signal-to-noise
ratio in ERGs can be quite low, especially under
conditions of low illumination. This means that the
actual signal from the retina may be masked by
background electrical activity or noise from other
sources, making it difficult to isolate the important
characteristics of the ERG. Informative parameters
such as amplitude and latency can be distorted by this
noise, complicating their analysis and interpretation.

Secondly, artifacts caused by eye movements,
blinking, or even slight shifts in the positioning of
electrodes can degrade the ERG signal. These artifacts,
under certain conditions and circumstances, can distort
the signal, leading to inaccurate conclusions if not
properly identified and addressed. The presence of such
artifacts requires the implementation of sophisticated
filtering and signal processing techniques to clean the
data before analysis [5].

Moreover, the ERG signal itself is complex and
comprises multiple components that reflect the
activity of different retinal layers and cell types.
Analyzing these components requires advanced
mathematical and computational tools to decompose
the signal into its constituent parts and accurately
attribute them to specific retinal functions. This
process can be further complicated in pathological
conditions where normal signal patterns are disrupted.

The variability of ERG responses between
patients adds yet another layer of complexity. Factors
such as age, individual retinal characteristics, and
overall health can cause significant differences in
ERG readings, making it difficult to establish standard

reference values. These inter-individual variations
mean that large datasets are necessary to improve
modern models and algorithms capable of accounting
for these differences and producing reliable diagnostic
information when developing an expert system
prototype

Figure 1 shows a real electroretinogram without
preprocessing.

Fig.1. Electroretinogram without proper processing:
on the ordinate axis - the price of division is
100 pV, on the abscissa axis - 50 ms.

The volume of data generated during ERG
recordings can vary significantly, with a single test
producing thousands of data points for each eye.
Analyzing this data requires powerful computational
resources and efficient processing algorithms. In this
context, the use of machine learning and artificial
intelligence is becoming increasingly important,
offering potential solutions for automating the analysis
and visualization of ERG data.

Interpreting ERG  results for  complex
pathological conditions or subtle functional changes,
such as those occurring in the early stages of
neurotoxicity  detection, demands a  deep
understanding of both retinal physiology and the
mechanisms behind the formation of
electroretinographic signals. This often involves
integrating ERG data with other diagnostic modalities
and clinical information to achieve a comprehensive
assessment of retinal health.

Main purpose of this study

The goal of this study is to enhance the
mathematical model of ERG, analyze existing
methods and algorithms for processing low-intensity
noisy signals, and develop the foundations for an
expert information-measurement system for studying
changes in the functional state of the visual analyzer
during the early stages of neurotoxicity detection.

This work proposes an improved ERG
mathematical model and outlines the core principles
for building a prototype of an expert information-
measurement system to study changes in the
functional state of the visual analyzer during the early
stages of neurotoxicity detection. These results aim to
improve the diagnostic utility of ERG by enhancing
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the accuracy, reliability, and interpretability of real-
world data.

Figure 2 shows the structure of the information
and measurement system (IMS) of the expert system
for assessing neurotoxicity.
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Fig. 2. Structure of the Information and Measurement
System (IMS) of the Expert System for
Neurotoxicity Assessment

To determine the parameters of the mathematical
model (coefficients of the difference equation), the
method of direct exhaustive search was employed.
This method guarantees a predefined level of accuracy
and  convergence but  requires  substantial
computational time.

The real-time processing of ERG data by the
expert system ensures its use for remote, automated,
real-time monitoring of the eye and visual system,
particularly in various toxicological contexts [6]. To
facilitate its operation, it is necessary to reduce the
duration of the research procedures and develop
processing algorithms to achieve the set goals.

The real-time processing of ERG data by the In
recent studies, advanced algorithms such as the
Hooke-Jeeves method and the Conjugate Gradient
method have been used for the parametric
identification of electroretinographic signal models.

Figure 3 shows an electroretinogram after
optimal processing with a higher and lower level of
neurotoxicity.

The Hooke-Jeeves method is known for its
simplicity and effectiveness, particularly in cases
where the function lacks an analytical derivative or is
non-differentiable. This method involves exploratory
and pattern moves to find the function’s minimum by
gradually refining the search direction. However, its
efficiency and computational complexity significantly
depend on the initial approximation conditions [7, 8].

The Conjugate Gradient method is an effective
algorithm for minimizing quadratic functions in
nonlinear spaces. It iteratively updates the search
direction using gradient information to accelerate
convergence.

line) and ERG with a higher and lower level of
neurotoxicity (after its optimal processing): on
the ordinate axis - the price of division is
100 pV, on the abscissa axis - 50 ms.

Despite its efficiency, this method has certain
limitations: its effectiveness and time complexity
depend on the initial approximation conditions, and
additional processing is required for effectively
handling initial constraints.

Research objects and research methodology

Given the limitations of the Hooke-Jeeves and
Conjugate  Gradient methods, more efficient
optimization approaches are proposed. Among these
are the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
method and the Nelder-Mead method.

The BFGS method is an iterative algorithm
designed for minimizing functions with nonlinear
constraints. The core idea of this method is to
approximate the Hessian matrix (which estimates the
second derivatives of the function) using a quasi-
Newton approach. This approximation significantly
reduces computational load compared to exact
Hessian calculations. However, the BFGS method also
requires storing the Hessian matrix approximation at
each iteration, which can increase memory demands,
and the choice and determination of the initial
approximation can significantly affect the method's
speed and convergence [9].

The BFGS update rule for the Hessian matrix Hk
at iteration k is mathematically expressed as:

Yo¥e  HisScH,

H.,=H +
o “ YISk S;Hksk

’ @

where:
S = X — X (2)
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and
Y = VE(X) = VE(X). (3)

The well-known Nelder-Mead method is one of
the most widely used derivative-free optimization
techniques. It operates through an iterative process
where a set of points, called a simplex, is modified at
each iteration to search for the minimum or maximum
of a function. The core idea of the Nelder-Mead
method lies in gradually expanding or contracting the
simplex in the direction of optimization based on
function comparisons at different points.

The Nelder-Mead algorithm involves several key
steps:  reflection, expansion, contraction, and
shrinkage. These steps are used to transform the
simplex in the function's landscape to converge
toward an optimal solution. For example, the
reflection step is mathematically represented as:

X, =X, +oX, —X,) 4)

where, Xc — is the centroid of the simplex, excluding
the worst point x», and o is the reflection coefficient.

The convergence of optimization algorithms, such
as the Nelder-Mead and BFGS methods, can be de-
termined based on several criteria:

o gradient norm — for derivative-based methods
like BFGS, convergence can be assessed using the
norm of the gradient. If |Vf (x,)| falls below a prede-

fined threshold, the algorithm is considered to have
converged.

e objective function value — convergence can
also be evaluated by monitoring changes in the objec-
tive  function's  value. If the difference
| (%..)— f(x)|is below a certain acceptable devia-

tion, the algorithm is deemed convergent.

e parameter change — in derivative-free meth-
ods like Nelder-Mead, convergence can be indicated
by changes in parameter values. If the simplex be-

comes sufficiently small, such that |, — x| falls

below a certain threshold for all points in the simplex,
convergence is achieved.

The convergence of these algorithms depends on
the nature of the objective function, initial conditions,
and specific problem constraints. Selecting appropri-
ate convergence criteria and considering the task's
context allows for maximizing the optimization pro-
cess's efficiency.

The BFGS method is an iterative algorithm for
minimizing functions subject to nonlinear constraints.
Its core idea lies in approximating the quasi-Newton
Hessian matrix, which estimates second derivatives of
functions. On the other hand, the Nelder-Mead meth-
od is one of the most popular derivative-free optimiza-
tion methods. It utilizes an iterative process, where the
simplex (a geometric shape in the parameter space) is
gradually expanded or contracted in the direction of
optimization based on function comparisons at differ-
ent points. Evaluating the time and hardware complex-

ity helps determine the suitability of the BFGS method
for large-scale tasks and real-time processing.

The evaluation of the time and hardware com-
plexity of optimization algorithms like the Nelder-
Mead method involves several aspects:

a) time complexity — the time complexity of the
Nelder-Mead method is characterized by its adaptive
nature and lack of explicit gradients. However, it is
often described as having a worst-case time complexi-

ty of O(n?), where n — is the number of parameters or

the dimensionality of the parameter space. The meth-
od iteratively adjusts the simplex to minimize or max-
imize the objective function, and each iteration re-
quires evaluating the function at several points in the
simplex. This contributes to the overall time com-
plexity.

b) hardware complexity — similar to the BFGS
method, the Nelder-Mead method does not require
specialized hardware and can be executed on standard
computing devices. However, memory requirements
may vary depending on the parameter space's size and
the number of iterations needed for convergence. The
method primarily uses memory to store the vertices of
the simplex and function evaluations, which can in-
crease with higher dimensional parameter spaces.

¢) memory requirements for the Nelder-Mead
method primarily depend on the dimensionality of the
parameter space and the number of iterations. Alt-
hough the method does not explicitly compute gradi-
ents or Hessian matrices, it still needs to store function
evaluations and simplex vertices. As the number of
parameters increases, memory usage may rise, poten-
tially becoming a limiting factor for large-scale opti-
mization problems.

Assessing the time and hardware complexity of
the Nelder-Mead method helps evaluate its suitability
for optimization tasks and provides insights into re-
source requirements for various computational prob-
lems.

The convergence of optimization algorithms,
such as the Nelder-Mead and BFGS methods, typical-
ly involves monitoring specific criteria throughout the
algorithm's iterations [10]. Here's how convergence
can be evaluated for each method:

I. objective function value — track the objective
function's value at each iteration. If the function value
gradually decreases or stabilizes within a predefined
tolerance, it suggests convergence.

1. simplex contraction — check if the simplex
contracts toward a minimum or maximum point. Con-
vergence occurs when the simplex contracts to a small
size, indicating that the optimum is approached.

I11. parameter change — monitor changes in the
parameter values from one iteration to the next. Con-
vergence is achieved when the parameter values stabi-
lize into a solution within the specified tolerance.

These criteria provide information on how effec-
tively the algorithms converge toward the optimal
solution during the optimization process.
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The Nelder-Mead algorithm is a promising de-
rivative-free optimization method widely applied in
various fields of science and bioengineering. Its pri-
mary advantage lies in its ability to handle functions
that may be irregular, non-smooth, or noisy.

Below is a detailed justification of the benefits of
this algorithm and an analysis of its convergence rate.

Figure 4 shows the block diagram of the Nelder-
Mead simplex algorithm.

I Generate a new simplex I‘i

:

Reflection or expansion or
contraction

I Shrink I ISubstitute one point

Fig. 4. Flowchart of Nelder-Mead simplex algorithm

The Nelder-Mead algorithm does not require the
calculation of function derivatives, making it suitable
for optimizing functions where derivative computation
is complex or impossible.

An example of determining convergence in the
MATLAB environment is shown in Fig. 5.

This is a significant advantage in problems
where the function has a complicated or unknown
analytical form. The algorithm uses only function
values to modify the simplex (a polytope in n-
dimensional space), making it appealing for practical
applications, including those with multiple local
minima. Its flexibility allows the algorithm to adapt to
various types of functions and problem geometries.
The algorithm efficiently operates in high-dimensional
spaces since it does not require the construction of
global function models or complex matrix operations.
As the method does not use derivatives, it is less
sensitive to noise in function values, making it useful
for problems where function measurements or
estimates contain noise (in our case, during the
registration of low-intensity electroretinograms).

The convergence speed of the Nelder-Mead
algorithm depends on several factors, including the

initial simplex configuration, the nature of the
optimized function, and the stopping criteria [11].
K Define the objective function for Nelder-Mead optimization

fun = @(X) calculateMSD(X, s, x);

% Initial guess for optimization

X0 = [blo; b2o];

[X, fval, exitflag, output] = fminsearch(fun, X0, options);

elapsedTime = toc;

% Check convergence

if exitflag > @

% Display optimal coefficients and search time
blo_nelder = X(1);

b2o_nelder = X(2);

disp('Optimal coefficients using Nelder-Mead method:');
(['blo: ', num2str(blo_nelder)]);
', num2str(b2o_nelder)]);

disp(['b

disp(['b20

disp(['E ed time: ', num2str(elapsedTime), ' seconds.'])

Fig. 5. Convergence determination in MATLAB
environment

While it is quite effective for many practical
problems, it does have limitations.

The Nelder-Mead algorithm exhibits linear
convergence, meaning that the speed of approaching
the optimal solution increases linearly with the
number of iterations. This makes the method less
effective for tasks that require high precision. The
initial shape and size of the simplex significantly
impact the convergence rate. A poorly chosen simplex
can lead to slow convergence or even getting trapped
in local minima. The time complexity of this
algorithm depends on the dimensionality of the
parameter space n. At each iteration, the method
requires function evaluation at n+1 points, resulting in
an O(n) complexity per iteration. However, the total
number of iterations can be substantial for problems
with high dimensionality or complex topology.

Modern models, algorithms, and novel
approaches for processing ERG data have been
applied, and the fundamental principles of
constructing a prototype expert information-
measurement system have been developed to study
changes in the functional state of the human visual
system at the early stages of detecting neurotoxicity.

Conclusions
1. The Nelder-Mead method, known for its
versatility and reliability, was applied for optimizing
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complex, non-uniform, or noisy objective functions
(such as the electroretinosignal (ERS) model in low-
intensity electroretinography). Its adaptability to
various optimization conditions allows it to be used in
the development of expert systems for neurotoxicity
risk identification tasks.

2. The evaluation of the time complexity
(computation time comparison) of the Nelder-Mead
algorithm showed that the time required to determine
the model coefficients was reduced by an average of
15%, considering the required accuracy for
reproducing the test electroretinosignal.

3. The use of the Nelder-Mead algorithm
enabled an average reduction of 30% in
computational power consumption, making it feasible
for application in expert information-measurement
systems for real-time ERS analysis and the
registration of functional changes that occur during the
early stages of detecting neurotoxicity.
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DITaBno Tumkis, YPoman Tkauyk, 20ekciii Snenxo
YT epronincoxuii nayionanvuu mexuiunuii ynisepcumem imeni Ieana Ilynios, Tepronine, Yrpaina
2 Hayionansnuii mexuiunuii ynisepcumem Yxpainu «Kuigcokuti noximexuiunuti incmumym imeni

leopa Cikopcvkozor, Kuie, Yrpaina

METOJI OIITUMIBALIL ITEHTU®IKALIII TTAPAMETPIB MOJEJII TECTOBOI'O
EJIEKTPOPETMHOCHUTHAJTY J1J11 OLIHIOBAHHS PU3MKIB HEMPOTOKCUKATIIL

CrarTst MpUCBsIUSHA JOCIIUKEHHIO Ta PO3po01Lli ONTUMI3alifHUX METOIIB /ISl MOJIETIFOBAHHS €JIeKTpOpeTHHOTpadidHNX
curHainiB (EPC) y xoHTekcTi BUSBICHHS paHHIX craliil Helporokcukauii. Enexrpoperunorpadis (EPT) € BaxnmBum
IHCTPYMEHTOM JJISl OLIHKK (PYHKITIOHAJIFHOTO CTaHy CiTKIBKHM OKa, IO JO3BOJIE A1arHOCTYBAaTH Pi3HOMAaHITHI 30pOBI
MATOJIOTii, BKIIFOYHO 3 HEHPOTOKCHKAIIIE€I0 HA pi3HMX eTanax. OmHaK, HU3bKa IHTEHCHBHICTh CTUMYJISIII Ta IIyM Yy CHUT-
HaJIaX MOKYTbh 3HAYHO YCKJIQIHIOBATH TPOIIeC 0OpOOKHM TaHUX Ta iX iHTepHpeTarii.
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VY craTTi 3anmpornoHoBaHO BHKOpUCTaHHS MeToxy Hennmepa-Mina s ontuMizanii mapaMeTpiB MaTeMaTHYHOT Mo
EPC. Ile#t meron onTuMizamii 6e3 MOXigHUX € €PEKTHBHUM IS CKIAQJHAX Ta HEPIBHOMIPHUX IINbOBUX (YHKIIH, 110
pOOHUTH HOTO TMEepCIEeKTUBHUM [UIS 3aCTOCYBAHHS B 3ajadax, MOB'A3aHMUX 3 aHAJI30M HU3bKOIHTCHCHBHUX CHTHAIIB.
Bymo mpoBeneHO OIiHKY YacoBOi CKIIATHOCTI alrOpUTMY, IO MOKa3aja CKOPOYCHHS Yacy BH3HAYCHHSA KOe(illi€HTiB
Mmozeni Ha 15% mpu 3abe3nedeHHi HEOOXiTHOT TOYHOCTI BIATBOPEHHS TECTOBOTO €lEKTpopeTHHOCHrHamy. KpiMm Toro,
BUKOpHCTaHHs anroputMy Henpepa-Mina no3Bonuio 3MEHIIMTH oO4ncmioBanbHI BUTpatd Ha 30%, mo poOuTs iforo
NPUIATHAM ISl PEaibHOTO Yacy.

Y HOCHJKEHHI TaKOX OIUCAHO CTPYKTYpPY IPOTOTHILYy EKCIEpTHOI iH(pOpMaliiHO-BUMIPIOBAILHOT CHCTEMH IS
MOHITOPHHTY 3MiH y ()YHKIIOHAJBHOMY CTaHi 30pOBOi CHCTEMH IIiJl BILTABOM HEHPOTOKCUYHUX YWHHHKIB. Pe3ynbpraTtu
MOXKYTh OYTH 3aCTOCOBaHI Y MEAMYHIM MPAKTHIL JJIs1 JIaTHOCTHKH HEHPOTOKCHKAIIT Ta 1HIIMX MATOJIOTIYHUAX CTAHIB Ha
paHHIX eTarnax, 0 JO3BOJHUTh MOJINIIUTH SIKICTh MEMYHUX BTPY4YaHb Ta CBOEYACHO 3a100IraT ceplio3HUM HACIHiKaM
JUTSL 37I0POB'S TAIlI€HTIB.

Koaro4oBi ci10Ba: enexTpopeTHHOCUTHAN, HU3bKA IHTEHCUBHICTh, HEHPOTOKCHKAILIISI, ONITUMI3aLlisl, TapaMeTpUYHa i1eH-
TH}IKaITiS.
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