БАГАТОКЛАСОВЕ РОЗПІЗНАВАННЯ ТЕХНІЧНОГО СТАНУ ЗВАРНОГО РЕЗЕРВУАРУ З ДЕФЕКТАМИ З ВИКОРИСТАННЯМ НЕЙРОМЕРЕЖЕВОГО КЛАСИФІКАТОРА
DOI:
https://doi.org/10.20535/1970.58(2).2019.189276Ключові слова:
багатокласове розпізнавання, вектор діагностичних ознак, нейромережевий класифікатор, локалізація багатоосередкового пошкодженняАнотація
Тенденції розвитку моніторингових систем частково або в повній мірі пов’язані з реалізацією принципів систем Structural Health Monitoring. Тому впровадження сучасних технологій є невід’ємною та необхідною частиною до реалізації підсистем діагностування та розпізнавання, що впроваджуються в складні комплексні моніторингові системи.
Потреба в таких системах пов’язана зі складністю та неоднорідністю внутрішніх процесів об’єктів контролю. Зазвичай, це складні просторові об’єкти, забезпечення цілісності яких може нести стратегічний характер. В роботі проведено дослідження поведінки реальної конструкції сталевого резервуару при появі та розвитку багатоосередкового пошкодження у місцях зварних швів.
При розробці системи багатокласового розпізнавання технічного стану зварних резервуарів необхідно ретельно дослідити зміну напружено-деформованого стану елементів конструкції під впливом експлуатаційних навантажень та можливого порушення його цілісності. Такі дослідження необхідні для визначення параметрів напружено-деформованого стану до появи та розвитку тріщин у зварних швах.
Багатоосередкове пошкодження представлено у вигляді трьох тріщин: одна вертикальна та дві горизонтальні. В статті наведено схему можливого розташування та розвитку тріщин, а також місця закріплення шести сенсорів. В роботі розглядаються два випадки виникнення дефектів. Перше дослідження пов’язано з розпізнаванням багатоосередкового пошкодження для локалізації одиничного пошкодження, тобто у випадку виникнення однієї з можливих тріщин. Другий випадок пов’язаний з багатоосередковим пошкодженням, тобто при одночасному виникненні двох та трьох тріщин.
Для проведеного аналізу ефективності багатокласового розпізнавання технічного стану об’єкта використано нейромережевий класифікатор, який побудований на основі ймовірнісної нейронної мережі. Отримані результати вказують на можливість та ефективність застосування такого класифікатора для розпізнавання тріщин у конструкції зварного резервуара.
Посилання
Adams D. Health monitoring of structural materials and components: methods with applications. John Wiley & Sons Ltd., 2007. 475 p.
Chang F.-K. Structural health monitoring : advancements and challenges for implementation. Pennsylvania: DEStech Publications, Inc., 2005. 1886 р.
N. Bouraou, O. Lukianchenko, S. Tsybulnik, D. Shevchuk, "Vibration condition monitoring of the vertical steel tanks", Vibrations in Physical Systems, pp. 55 – 60, 2016.
N. Bouraou, S. Tsybulnik, D. Shevchuk, "The investigation of model of the vibration measuring channel of the complex monitoring system of vertical steel tanks", EasternEuropean Journal of Enterprise Technologies, № 5/9, 2015. DOI: 10.15587/1729-4061.2015.50980
S. Ignatovich, M. Karuskevich. Monitoring of the fatigue resource of aircraft. Kyiv, National Aviation University, 2014. – 260 p. (In Russian)
N. Bouraou, D. Pivtorak, S. Rupich, “Multi-class recognition of objects technical condition by clas-sifier based on Probabilistic Neural Network”, EEJET, 5/4, pp. 24 – 30, 2017. DOI: 10.15587/1729-4061.2017.109968
N. Bouraou, S. Rupich, "Tasks and models of multi-class diagnostic to complex dimensional objects", Bulletin of Engineering academy of Ukraine, №3, pp. 80-87, 2017. (In Ukrainian)
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право на публікацію залишається за авторами.
Автори можуть використовувати власні матеріали в інших публікаціях за умови посилання на збірник наукових праць "Вісник Київського політехнічного інституту. Серія ПРИЛАДОБУДУВАННЯ" як на перше місце видання та на Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського» як на видавця.
Автори публікують свої статті в збірнику на умовах ліцензії Creative Commons:
- Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи на умовах ліцензії CC BY 4.0, яка дозволяє іншим особам вільно розповсюджувати опубліковану роботу з обов'язковим посиланням на авторів оригінальної роботи та першу публікацію роботи у цьому журналі.
- Автори мають право укладати самостійні додаткові угоди щодо неексклюзивного розповсюдження роботи у тому вигляді, в якому вона була опублікована цим журналом (наприклад, розміщувати роботу в електронному сховищі установи або публікувати у складі монографії), за умови збереження посилання на першу публікацію роботи у цьому журналі.
- Політика журналу дозволяє розміщення авторами в мережі Інтернет (наприклад, у сховищах установ або на особистих веб-сайтах) рукопису роботи, як до подання цього рукопису до редакції, так і під час його редакційного опрацювання, оскільки це сприяє виникненню продуктивної наукової дискусії та позитивно позначається на динаміці цитування опублікованої роботи.
Видавець (КПІ ім. Ігоря Сікорського) має право за будь-якого використання цього видання зазначати своє ім'я або вимагати такого зазначення.
Редакційна колегія залишає за собою право розміщувати опубліковані в збірнику статті в різних інформаційних базах для надання відкритого доступу до матеріалів з метою популяризації наукових досліджень та підвищення цитованості авторів.